128,948 research outputs found

    Numerically improved computational scheme for the optical conductivity tensor in layered systems

    Full text link
    The contour integration technique applied to calculate the optical conductivity tensor at finite temperatures in the case of layered systems within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker band structure method is improved from the computational point of view by applying the Gauss-Konrod quadrature for the integrals along the different parts of the contour and by designing a cumulative special points scheme for two-dimensional Brillouin zone integrals corresponding to cubic systems.Comment: 17 pages, LaTeX + 4 figures (Encapsulated PostScript), submitted to J. Phys.: Condensed Matter (19 Sept. 2000

    New four-dimensional integrals by Mellin-Barnes transform

    Full text link
    This paper is devoted to the calculation by Mellin-Barnes transform of a especial class of integrals. It contains double integrals in the position space in d = 4-2e dimensions, where e is parameter of dimensional regularization. These integrals contribute to the effective action of the N = 4 supersymmetric Yang-Mills theory. The integrand is a fraction in which the numerator is a logarithm of ratio of spacetime intervals, and the denominator is the product of powers of spacetime intervals. According to the method developed in the previous papers, in order to make use of the uniqueness technique for one of two integrations, we shift exponents in powers in the denominator of integrands by some multiples of e. As the next step, the second integration in the position space is done by Mellin-Barnes transform. For normalizing procedure, we reproduce first the known result obtained earlier by Gegenbauer polynomial technique. Then, we make another shift of exponents in powers in the denominator to create the logarithm in the numerator as the derivative with respect to the shift parameter delta. We show that the technique of work with the contour of the integral modified in this way by using Mellin-Barnes transform repeats the technique of work with the contour of the integral without such a modification. In particular, all the operations with a shift of contour of integration over complex variables of two-fold Mellin-Barnes transform are the same as before the delta modification of indices, and even the poles of residues coincide. This confirms the observation made in the previous papers that in the position space all the Green function of N = 4 supersymmetric Yang-Mills theory can be expressed in terms of UD functions.Comment: Talk at El Congreso de Matematica Capricornio, COMCA 2009, Antofagasta, Chile and at DMFA seminar, UCSC, Concepcion, Chile, 24 pages; revised version, Introduction is modified, Conclusion is added, five Appendices are added, Appendix E is ne

    Layer-resolved optical conductivity of Co|Pt multilayers

    Full text link
    The complex optical conductivity tensor is calculated for the Co|Pt systems by applying a contour integration technique within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker method. It is shown that the optical conductivity of the Co|Pt multilayer systems is dominated by contributions arising from the Pt cap and/or substrate layers.Comment: 7 pages (LaTeX), 2 (a,b) figures (Encapsulated PostScript), J. Magn. Magn. Materials, in pres

    Casimir's energy of a conducting sphere and of a dilute dielectric ball

    Full text link
    In this paper we sum over the spherical modes appearing in the expression for the Casimir energy of a conducting sphere and of a dielectric ball (assuming the same speed of light inside and outside), before doing the frequency integration. We derive closed integral expressions that allow the calculations to be done to all orders, without the use of regularization procedures. The technique of mode summation using a contour integral is critically examined.Comment: references added; typos fixe

    Ab-initio calculation of Kerr spectra for semi-infinite systems including multiple reflections and optical interferences

    Full text link
    Based on Luttinger's formulation the complex optical conductivity tensor is calculated within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker method for layered systems by means of a contour integration technique. For polar geometry and normal incidence ab-initio Kerr spectra of multilayer systems are then obtained by including via a 2x2 matrix technique all multiple reflections between layers and optical interferences in the layers. Applications to Co|Pt5 and Pt3|Co|Pt5 on the top of a semi-infinite fcc-Pt(111) bulk substrate show good qualitative agreement with the experimental spectra, but differ from those obtained by applying the commonly used two-media approach.Comment: 32 pages (LaTeX), 5 figures (Encapsulated PostScript), submitted to Phys. Rev.

    Evaluation of a technique to generate artificially thickened boundary layers in supersonic and hypersonic flows

    Get PDF
    The feasibility of using a contoured honeycomb model to generate a thick boundary layer in high-speed, compressible flow was investigated. The contour of the honeycomb was tailored to selectively remove momentum in a minimum of streamwise distance to create an artificially thickened turbulent boundary layer. Three wind tunnel experiments were conducted to verify the concept. Results indicate that this technique is a viable concept, especially for high-speed inlet testing applications. In addition, the compactness of the honeycomb boundary layer simulator allows relatively easy integration into existing wind tunnel model hardware

    Ingredients of a Casimir analog computer

    Full text link
    We present the basic ingredients of a technique to compute quantum Casimir forces at micrometer scales using antenna measurements at tabletop, e.g. centimeter, scales, forming a type of analog computer for the Casimir force. This technique relies on a correspondence that we derive between the contour integration of the Casimir force in the complex frequency plane and the electromagnetic response of a physical dissipative medium in a finite, real frequency bandwidth
    • …
    corecore