1,132 research outputs found

    Towards disappearing user interfaces for ubiquitous computing: human enhancement from sixth sense to super senses

    Get PDF
    The enhancement of human senses electronically is possible when pervasive computers interact unnoticeably with humans in Ubiquitous Computing. The design of computer user interfaces towards “disappearing” forces the interaction with humans using a content rather than a menu driven approach, thus the emerging requirement for huge number of non-technical users interfacing intuitively with billions of computers in the Internet of Things is met. Learning to use particular applications in Ubiquitous Computing is either too slow or sometimes impossible so the design of user interfaces must be naturally enough to facilitate intuitive human behaviours. Although humans from different racial, cultural and ethnic backgrounds own the same physiological sensory system, the perception to the same stimuli outside the human bodies can be different. A novel taxonomy for Disappearing User Interfaces (DUIs) to stimulate human senses and to capture human responses is proposed. Furthermore, applications of DUIs are reviewed. DUIs with sensor and data fusion to simulate the Sixth Sense is explored. Enhancement of human senses through DUIs and Context Awareness is discussed as the groundwork enabling smarter wearable devices for interfacing with human emotional memories

    Augmented and mixed reality features and tools for remote laboratory experiment

    Get PDF
    Augmented Reality (AR) is the process of overlaying meaningful interactive information in a live video stream for creating an enriched visual experience for users. Within Remote Access Laboratories (RAL) this enables users to gain design experience along with gaining knowledge about the particular experiment in question and potentially collaborate on design experiences. This paper focuses on the issues related to the applications of AR in RAL, the levels of AR in context of RAL and their effect on the learning tools. This paper also discusses the challenges of integrating a Natural User interface into the AR for RAL experiments. Finally it presets two example applications for AR in RAL experiment - Virtual Objects Creation and Object Identification and Tagging

    Advanced displays and natural user interfaces to support learning

    Full text link
    [EN] Advanced displays and Natural User Interfaces (NUI) are a very suitable combination for developing systems to provide an enhanced and richer user experience. This combination can be appropriate in several fields and has not been extensively exploited. One of the fields that this combination is especially suitable for is education. Nowadays, children are growing up playing with computer games, using mobile devices, and other technological devices. New learning methods that use these new technologies can help in the learning process. In this paper, two new methods that use advanced displays and NUI for learning about a period of history are presented. One of the methods is an autostereoscopic system that lets children see themselves as a background in the game and renders the elements in 3D without the need for special glasses; the second method is a frontal projection system that projects the image on a table in 2D and works similarly to a touch table. The Microsoft Kinect© is used in both systems for the interaction. A comparative study to check different aspects was carried out. A total of 128 children from 7 to 11 years old participated in the study. From the results, we observed that the different characteristics of the systems did not influence the children s acquired knowledge, engagement, or satisfaction. There were statistically significant differences for depth perception and presence in which the autostereoscopic system was scored higher. However, of the two systems, the children considered the frontal projection to be easier to use. We would like to highlight that the scores for the two systems and for all the questions were very high. These results suggest that games of this kind (advanced displays and NUI) could be appropriate educational games and that autostereoscopy is a technology to exploit in their development.This work was funded by the Spanish Ministry of Science and Innovation through the APRENDRA project (TIN2009-14319-C02-01).Martín San José, JF.; Juan, M.; Mollá Vayá, RP.; Vivó Hernando, RA. (2017). Advanced displays and natural user interfaces to support learning. Interactive Learning Environments. https://doi.org/10.1080/10494820.2015.1090455

    How to design for persistence and retention in MOOCs?

    Get PDF
    Design of educational interventions is typically carried out following a design cycle involving phases of investigation, conceptualization, prototyping, implementation, execution and evaluation. This cycle can be applied at different levels of granularity e.g. learning activity, module, course or programme. In this paper we consider an aspect of learner behavior that can be critical to the success of many MOOCs i.e. their persistence to study, and the related theme of learner retention. We reflect on the impact that consideration of these can have on design decisions at different stages in the design cycle with the aim of en-hancing MOOC design in relation to learner persistence and retention, with particular attention to the European context
    corecore