5,142 research outputs found

    A Taxonomy of Traffic Forecasting Regression Problems From a Supervised Learning Perspective

    Get PDF
    One contemporary policy to deal with traffic congestion is the design and implementation of forecasting methods that allow users to plan ahead of time and decision makers to improve traffic management. Current data availability and growing computational capacities have increased the use of machine learning (ML) to address traffic prediction, which is mostly modeled as a supervised regression problem. Although some studies have presented taxonomies to sort the literature in this field, they are mostly oriented to classify the ML methods applied and a little effort has been directed to categorize the traffic forecasting problems approached by them. As far as we know, there is no comprehensive taxonomy that classifies these problems from the point of view of both traffic and ML. In this paper, we propose a taxonomy to categorize the aforementioned problems from both traffic and a supervised regression learning perspective. The taxonomy aims at unifying and consolidating categorization criteria related to traffic and it introduces new criteria to classify the problems in terms of how they are modeled from a supervised regression approach. The traffic forecasting literature, from 2000 to 2019, is categorized using this taxonomy to illustrate its descriptive power. From this categorization, different remarks are discussed regarding the current gaps and trends in the addressed traffic forecasting area

    CPS Data Streams Analytics based on Machine Learning for Cloud and Fog Computing: A Survey

    Get PDF
    Cloud and Fog computing has emerged as a promising paradigm for the Internet of things (IoT) and cyber-physical systems (CPS). One characteristic of CPS is the reciprocal feedback loops between physical processes and cyber elements (computation, software and networking), which implies that data stream analytics is one of the core components of CPS. The reasons for this are: (i) it extracts the insights and the knowledge from the data streams generated by various sensors and other monitoring components embedded in the physical systems; (ii) it supports informed decision making; (iii) it enables feedback from the physical processes to the cyber counterparts; (iv) it eventually facilitates the integration of cyber and physical systems. There have been many successful applications of data streams analytics, powered by machine learning techniques, to CPS systems. Thus, it is necessary to have a survey on the particularities of the application of machine learning techniques to the CPS domain. In particular, we explore how machine learning methods should be deployed and integrated in cloud and fog architectures for better fulfilment of the requirements, e.g. mission criticality and time criticality, arising in CPS domains. To the best of our knowledge, this paper is the first to systematically study machine learning techniques for CPS data stream analytics from various perspectives, especially from a perspective that leads to the discussion and guidance of how the CPS machine learning methods should be deployed in a cloud and fog architecture
    corecore