545 research outputs found

    Introduction to the Special Issue "Applications in Self-Aware Computing Systems and their Evaluation"

    Get PDF
    The joint 1st Workshop on Evaluations and Measurements in Self-Aware Computing Systems (EMSAC 2019) and Workshop on Self-Aware Computing (SeAC) was held as part of the FAS* conference alliance in conjunction with the 16th IEEE International Conference on Autonomic Computing (ICAC) and the 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO) in UmeĂĄ, Sweden on 20 June 2019. The goal of this one-day workshop was to bring together researchers and practitioners from academic environments and from the industry to share their solutions, ideas, visions, and doubts in self-aware computing systems in general and in the evaluation and measurements of such systems in particular. The workshop aimed to enable discussions, partnerships, and collaborations among the participants. This special issue follows the theme of the workshop. It contains extended versions of workshop presentations as well as additional contributions

    CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts, Challenges and a Reference Framework

    Get PDF
    The current trend of developing highly distributed, context aware, heterogeneous computing intense and data-sensitive applications is changing the boundaries of cloud computing. Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem of a combination of resources, ranging from high density compute and storage to very lightweight embedded computers running on batteries or solar power, is available for DevOps teams from what is known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled operations and resources monitoring for handling anomalies. Unfortunately, the operation and management of such heterogeneous computing environments (including edge, cloud and network services) is complex and operators face challenges such as the continuous optimization and autonomous (re-)deployment of context-aware stateless and stateful applications where, however, they must ensure service continuity while anticipating potential failures in the underlying infrastructure. In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline), proposing techniques and methods for applications’ operators to fully embrace the possibilities of the Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of the CloudOps.This research was funded by the European project PIACERE (Horizon 2020 Research and Innovation Programme, under grant agreement No. 101000162)

    Online failure prediction in air traffic control systems

    Get PDF
    This thesis introduces a novel approach to online failure prediction for mission critical distributed systems that has the distinctive features to be black-box, non-intrusive and online. The approach combines Complex Event Processing (CEP) and Hidden Markov Models (HMM) so as to analyze symptoms of failures that might occur in the form of anomalous conditions of performance metrics identified for such purpose. The thesis presents an architecture named CASPER, based on CEP and HMM, that relies on sniffed information from the communication network of a mission critical system, only, for predicting anomalies that can lead to software failures. An instance of Casper has been implemented, trained and tuned to monitor a real Air Traffic Control (ATC) system developed by Selex ES, a Finmeccanica Company. An extensive experimental evaluation of CASPER is presented. The obtained results show (i) a very low percentage of false positives over both normal and under stress conditions, and (ii) a sufficiently high failure prediction time that allows the system to apply appropriate recovery procedures

    Quantifying cloud performance and dependability:Taxonomy, metric design, and emerging challenges

    Get PDF
    In only a decade, cloud computing has emerged from a pursuit for a service-driven information and communication technology (ICT), becoming a significant fraction of the ICT market. Responding to the growth of the market, many alternative cloud services and their underlying systems are currently vying for the attention of cloud users and providers. To make informed choices between competing cloud service providers, permit the cost-benefit analysis of cloud-based systems, and enable system DevOps to evaluate and tune the performance of these complex ecosystems, appropriate performance metrics, benchmarks, tools, and methodologies are necessary. This requires re-examining old system properties and considering new system properties, possibly leading to the re-design of classic benchmarking metrics such as expressing performance as throughput and latency (response time). In this work, we address these requirements by focusing on four system properties: (i) elasticity of the cloud service, to accommodate large variations in the amount of service requested, (ii) performance isolation between the tenants of shared cloud systems and resulting performance variability, (iii) availability of cloud services and systems, and (iv) the operational risk of running a production system in a cloud environment. Focusing on key metrics for each of these properties, we review the state-of-the-art, then select or propose new metrics together with measurement approaches. We see the presented metrics as a foundation toward upcoming, future industry-standard cloud benchmarks

    A framework for QoS driven user-side cloud service management

    Get PDF
    This thesis presents a comprehensive framework that assists the cloud service user in making cloud service management decisions, such as service selection and migration. The proposed framework utilizes the QoS history of the available services for QoS forecasting and multi-criteria decision making. It then integrates all the inherent necessary processes, such as QoS monitoring, forecasting, service comparison and ranking to recommend the best and optimal decision to the user

    Service Level Agreements for Communication Networks: A Survey

    Get PDF
    Abstract. Information and Communication Technology (ICT) is being provided to the variety of endusers demands, thereby providing a better and improved management of services is crucial. Therefore, Service Level Agreements (SLAs) are essential and play a key role to manage the provided services among the network entities. This survey identifies the state of the art covering concepts, approaches and open problems of the SLAs establishment, deployment and management. This paper is organised in a way that the reader can access a variety of proposed SLA methods and models addressed and provides an overview of the SLA actors and elements. It also describes SLAs’ characteristics and objectives. SLAs’ existing methodologies are explained and categorised followed by the Service Quality Categories (SQD) and Quality-Based Service Descriptions (QSD). SLA modelling and architectures are discussed, and open research problems and future research directions are introduced. The establishment of a reliable, safe and QoE-aware computer networking needs a group of services that goes beyond pure networking services. Therefore, within the paper this broader set of services are taken into consideration and for each Service Level Objective (SLO) the related services domains will be indicated. The purpose of this survey is to identify existing research gaps in utilising SLA elements to develop a generic methodology, considering all quality parameters beyond the Quality of Service (QoS) and what must or can be taken into account to define, establish and deploy an SLA. This study is still an active research on how to specify and develop an SLA to achieve the win-win agreements among all actors.Peer ReviewedPostprint (published version
    • …
    corecore