9,614 research outputs found

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion

    PowerAqua: fishing the semantic web

    Get PDF
    The Semantic Web (SW) offers an opportunity to develop novel, sophisticated forms of question answering (QA). Specifically, the availability of distributed semantic markup on a large scale opens the way to QA systems which can make use of such semantic information to provide precise, formally derived answers to questions. At the same time the distributed, heterogeneous, large-scale nature of the semantic information introduces significant challenges. In this paper we describe the design of a QA system, PowerAqua, designed to exploit semantic markup on the web to provide answers to questions posed in natural language. PowerAqua does not assume that the user has any prior information about the semantic resources. The system takes as input a natural language query, translates it into a set of logical queries, which are then answered by consulting and aggregating information derived from multiple heterogeneous semantic sources

    Improving Ontology Recommendation and Reuse in WebCORE by Collaborative Assessments

    Get PDF
    In this work, we present an extension of CORE [8], a tool for Collaborative Ontology Reuse and Evaluation. The system receives an informal description of a specific semantic domain and determines which ontologies from a repository are the most appropriate to describe the given domain. For this task, the environment is divided into three modules. The first component receives the problem description as a set of terms, and allows the user to refine and enlarge it using WordNet. The second module applies multiple automatic criteria to evaluate the ontologies of the repository, and determines which ones fit best the problem description. A ranked list of ontologies is returned for each criterion, and the lists are combined by means of rank fusion techniques. Finally, the third component uses manual user evaluations in order to incorporate a human, collaborative assessment of the ontologies. The new version of the system incorporates several novelties, such as its implementation as a web application; the incorporation of a NLP module to manage the problem definitions; modifications on the automatic ontology retrieval strategies; and a collaborative framework to find potential relevant terms according to previous user queries. Finally, we present some early experiments on ontology retrieval and evaluation, showing the benefits of our system

    From Frequency to Meaning: Vector Space Models of Semantics

    Full text link
    Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field

    Semantics-based selection of everyday concepts in visual lifelogging

    Get PDF
    Concept-based indexing, based on identifying various semantic concepts appearing in multimedia, is an attractive option for multimedia retrieval and much research tries to bridge the semantic gap between the media’s low-level features and high-level semantics. Research into concept-based multimedia retrieval has generally focused on detecting concepts from high quality media such as broadcast TV or movies, but it is not well addressed in other domains like lifelogging where the original data is captured with poorer quality. We argue that in noisy domains such as lifelogging, the management of data needs to include semantic reasoning in order to deduce a set of concepts to represent lifelog content for applications like searching, browsing or summarisation. Using semantic concepts to manage lifelog data relies on the fusion of automatically-detected concepts to provide a better understanding of the lifelog data. In this paper, we investigate the selection of semantic concepts for lifelogging which includes reasoning on semantic networks using a density-based approach. In a series of experiments we compare different semantic reasoning approaches and the experimental evaluations we report on lifelog data show the efficacy of our approach
    corecore