220 research outputs found

    Toward automated refactoring of crosscutting concerns into aspects

    Get PDF
    Aspect-oriented programing (AOP) improves the separation of concerns by encapsulating crosscutting concerns into aspects. Thus, aspect-oriented programing aims to better support the evolution of systems. Along this line, we have defined a process that assists the developer to refactor an object-oriented system into an aspect-oriented one. In this paper we propose the use of association rules and Markov models to improve the assistance in accomplishing some of the tasks of this process. Specifically, we use these techniques to help the developer in the task of encapsulating a fragment of aspectizable code into an aspect. This includes the choice of a fragment of aspectizable code to be encapsulated, the selection of a suitable aspect refactoring, and the analysis and application of additional restructurings when necessary. Our case study of the refactoring of a J2EE system shows that the use of the process reduces the intervention of the developer during the refactoring.Fil: Vidal, Santiago AgustĂ­n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Tandil. Instituto Superior de IngenierĂ­a del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de IngenierĂ­a del Software; ArgentinaFil: Marcos, Claudia Andrea. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Tandil. Instituto Superior de IngenierĂ­a del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de IngenierĂ­a del Software; Argentina. Provincia de Buenos Aires. GobernaciĂłn. ComisiĂłn de Investigaciones CientĂ­ficas; Argentin

    A Unified Platform for Data Driven Web Applictions with Automatic Client-Server Partitioning

    Full text link
    Data-driven web applications are usually structured in three tiers with different programming models at each tier. This division forces developers to manually partition application functionality across the tiers, resulting in complex logic, suboptimal partitioning, and expensive re-partitioning of applications. In this paper, we introduce a unified platform for automatic partitioning of data-driven web applications. Our approach is based on Hilda, a high-level declarative programming language with a unified data and programming model for all the layers of the application. Based on run-time properties of the application, Hilda's run time system automatically partitions the application between the tiers to improve response time while adhering to memory or processing constraints at the clients. We evaluate our methodology with traces from a real application and with TPC-W, and our results show that automatic partitioning outperforms manual partitioning without the associated development overhead

    A Policy-Based Resource Brokering Environment for Computational Grids

    Get PDF
    With the advances in networking infrastructure in general, and the Internet in particular, we can build grid environments that allow users to utilize a diverse set of distributed and heterogeneous resources. Since the focus of such environments is the efficient usage of the underlying resources, a critical component is the resource brokering environment that mediates the discovery, access and usage of these resources. With the consumer\u27s constraints, provider\u27s rules, distributed heterogeneous resources and the large number of scheduling choices, the resource brokering environment needs to decide where to place the user\u27s jobs and when to start their execution in a way that yields the best performance for the user and the best utilization for the resource provider. As brokering and scheduling are very complicated tasks, most current resource brokering environments are either specific to a particular grid environment or have limited features. This makes them unsuitable for large applications with heterogeneous requirements. In addition, most of these resource brokering environments lack flexibility. Policies at the resource-, application-, and system-levels cannot be specified and enforced to provide commitment to the guaranteed level of allocation that can help in attracting grid users and contribute to establishing credibility for existing grid environments. In this thesis, we propose and prototype a flexible and extensible Policy-based Resource Brokering Environment (PROBE) that can be utilized by various grid systems. In designing PROBE, we follow a policy-based approach that provides PROBE with the intelligence to not only match the user\u27s request with the right set of resources, but also to assure the guaranteed level of the allocation. PROBE looks at the task allocation as a Service Level Agreement (SLA) that needs to be enforced between the resource provider and the resource consumer. The policy-based framework is useful in a typical grid environment where resources, most of the time, are not dedicated. In implementing PROBE, we have utilized a layered architecture and façade design patterns. These along with the well-defined API, make the framework independent of any architecture and allow for the incorporation of different types of scheduling algorithms, applications and platform adaptors as the underlying environment requires. We have utilized XML as a base for all the specification needs. This provides a flexible mechanism to specify the heterogeneous resources and user\u27s requests along with their allocation constraints. We have developed XML-based specifications by which high-level internal structures of resources, jobs and policies can be specified. This provides interoperability in which a grid system can utilize PROBE to discover and use resources controlled by other grid systems. We have implemented a prototype of PROBE to demonstrate its feasibility. We also describe a test bed environment and the evaluation experiments that we have conducted to demonstrate the usefulness and effectiveness of our approach
    • …
    corecore