8,434 research outputs found

    Exploring the Affective Loop

    Get PDF
    Research in psychology and neurology shows that both body and mind are involved when experiencing emotions (Damasio 1994, Davidson et al. 2003). People are also very physical when they try to communicate their emotions. Somewhere in between beings consciously and unconsciously aware of it ourselves, we produce both verbal and physical signs to make other people understand how we feel. Simultaneously, this production of signs involves us in a stronger personal experience of the emotions we express. Emotions are also communicated in the digital world, but there is little focus on users' personal as well as physical experience of emotions in the available digital media. In order to explore whether and how we can expand existing media, we have designed, implemented and evaluated /eMoto/, a mobile service for sending affective messages to others. With eMoto, we explicitly aim to address both cognitive and physical experiences of human emotions. Through combining affective gestures for input with affective expressions that make use of colors, shapes and animations for the background of messages, the interaction "pulls" the user into an /affective loop/. In this thesis we define what we mean by affective loop and present a user-centered design approach expressed through four design principles inspired by previous work within Human Computer Interaction (HCI) but adjusted to our purposes; /embodiment/ (Dourish 2001) as a means to address how people communicate emotions in real life, /flow/ (Csikszentmihalyi 1990) to reach a state of involvement that goes further than the current context, /ambiguity/ of the designed expressions (Gaver et al. 2003) to allow for open-ended interpretation by the end-users instead of simplistic, one-emotion one-expression pairs and /natural but designed expressions/ to address people's natural couplings between cognitively and physically experienced emotions. We also present results from an end-user study of eMoto that indicates that subjects got both physically and emotionally involved in the interaction and that the designed "openness" and ambiguity of the expressions, was appreciated and understood by our subjects. Through the user study, we identified four potential design problems that have to be tackled in order to achieve an affective loop effect; the extent to which users' /feel in control/ of the interaction, /harmony and coherence/ between cognitive and physical expressions/,/ /timing/ of expressions and feedback in a communicational setting, and effects of users' /personality/ on their emotional expressions and experiences of the interaction

    Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    Get PDF
    This major component of the research described in this thesis is 3D computer graphics, specifically the realistic physics-based softbody simulation and haptic responsive environments. Minor components include advanced human-computer interaction environments, non-linear documentary storytelling, and theatre performance. The journey of this research has been unusual because it requires a researcher with solid knowledge and background in multiple disciplines; who also has to be creative and sensitive in order to combine the possible areas into a new research direction. [...] It focuses on the advanced computer graphics and emerges from experimental cinematic works and theatrical artistic practices. Some development content and installations are completed to prove and evaluate the described concepts and to be convincing. [...] To summarize, the resulting work involves not only artistic creativity, but solving or combining technological hurdles in motion tracking, pattern recognition, force feedback control, etc., with the available documentary footage on film, video, or images, and text via a variety of devices [....] and programming, and installing all the needed interfaces such that it all works in real-time. Thus, the contribution to the knowledge advancement is in solving these interfacing problems and the real-time aspects of the interaction that have uses in film industry, fashion industry, new age interactive theatre, computer games, and web-based technologies and services for entertainment and education. It also includes building up on this experience to integrate Kinect- and haptic-based interaction, artistic scenery rendering, and other forms of control. This research work connects all the research disciplines, seemingly disjoint fields of research, such as computer graphics, documentary film, interactive media, and theatre performance together.Comment: PhD thesis copy; 272 pages, 83 figures, 6 algorithm

    Tangible user interface design for learners with different multiple intelligence

    Get PDF
    The creation of learning activities responsive to learners with different basic skills has been limited due to a classroom environment and applied technologies. The goals of this research were to develop Tang-MI, a game with a tangible user interface supporting primary school learners’ analytical skills based on the theory of multiple intelligences (MI), and to present design guidelines for a tangible user interface suitable for learners in different MI groups. In this research, the Tangible user interface for multiple intelligence (Tang-MI) was tested with thirty students initially evaluated for their multiple intelligences. The learners’ usage behavior was observed and recorded while the students performed the assigned tasks. The behavioral data were analyzed and grouped into behaviors occurring before performing the tasks, during the tasks, and after completing the tasks. Based on the learners’ usage behavior, the tangible user interface design guidelines for learners in different MI groups were proposed concerning physical equipment design, question design, interactive program design, audio design, and animated visual feedback design. These guidelines would help educators build learning games that respond to the learners’ intelligence styles and enhance students’ motivation to learn

    GAINE - A Portable Framework for the Development of Edutainment Applications Based on Multitouch and Tangible Interaction

    Get PDF
    In the last few years, Multitouch and Tangible User Interfaces have emerged as a powerful tool to integrate interactive surfaces and responsive spaces that embody digital information. Besides providing a natural interaction with digital contents, they allow the interaction of multiple users at the same time, thus promoting collaborative activities and information sharing. In particular, these characteristics have opened new exploration possibilities in the edutainment context, as witnessed by the many applications successfully developed in different areas, from children’s collaborative learning to interactive storytelling, cultural heritage and medical therapy support. However, due to the availability of different multitouch and tangible interaction technologies and of different target computing platforms, the development and deployment of such applications can be challenging. To this end, in this paper we present GAINE (tanGible Augmented INteraction for Edutainment), a software framework that enables rapid prototyping and development of tangible augmented applications for edutainment purposes. GAINE has two main features. First, it offers developers high-level context specific constructs that significantly reduces the implementation burden. Second, the framework is portable on different operating systems and offers independence from the underlying hardware and tracking technology. In this paper, we also discuss several case studies to show the effectiveness of GAINE in simplifying the development of entertainment and edutainment applications based on multitouch and tangible interaction

    Interfaces for human-centered production and use of computer graphics assets

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    Multimodal augmented reality tangible gaming

    Get PDF
    This paper presents tangible augmented reality gaming environment that can be used to enhance entertainment using a multimodal tracking interface. Players can interact using different combinations between a pinch glove, a Wiimote, a six-degrees-of-freedom tracker, through tangible ways as well as through I/O controls. Two tabletop augmented reality games have been designed and implemented including a racing game and a pile game. The goal of the augmented reality racing game is to start the car and move around the track without colliding with either the wall or the objects that exist in the gaming arena. Initial evaluation results showed that multimodal-based interaction games can be beneficial in gaming. Based on these results, an augmented reality pile game was implemented with goal of completing a circuit of pipes (from a starting point to an end point on a grid). Initial evaluation showed that tangible interaction is preferred to keyboard interaction and that tangible games are much more enjoyable
    • 

    corecore