185 research outputs found

    A computational approach to steady-state convergence of fluid limits for Coxian queuing networks with abandonment

    Get PDF
    Many-server queuing networks with general service and abandonment times have proven to be a realistic model for scenarios such as call centers and health-care systems. The presence of abandonment makes analytical treatment difficult for general topologies. Hence, such networks are usually studied by means of fluid limits. The current state of the art, however, suffers from two drawbacks. First, convergence to a fluid limit has been established only for the transient, but not for the steady state regime. Second, in the case of general distributed service and abandonment times, convergence to a fluid limit has been either established only for a single queue, or has been given by means of a system of coupled integral equations which does not allow for a numerical solution. By making the mild assumption of Coxian-distributed service and abandonment times, in this paper we address both drawbacks by establishing convergence in probability to a system of coupled ordinary differential equations (ODEs) using the theory of Kurtz. The presence of abandonments leads in many cases to ODE systems with a global attractor, which is known to be a sufficient condition for the fluid and the stochastic steady state to coincide in the limiting regime. The fact that our ODE systems are piecewise affine enables a computational method for establishing the presence of a global attractor, based on a solution of a system of linear matrix inequalities

    A Mathematical Modelling Approach for Systems Where the Servers Are Almost Always Busy

    Get PDF
    The design and implementation of new configurations of mental health services to meet local needs is a challenging problem. In the UK, services for common mental health disorders such as anxiety and depression are an example of a system running near or at capacity, in that it is extremely rare for the queue size for any given mode of treatment to fall to zero. In this paper we describe a mathematical model that can be applied in such circumstances. The model provides a simple way of estimating the mean and variance of the number of patients that would be treated within a given period of time given a particular configuration of services as defined by the number of appointments allocated to different modes of treatment and the referral patterns to and between different modes of treatment. The model has been used by service planners to explore the impact of different options on throughput, clinical outcomes, queue sizes, and waiting times. We also discuss the potential for using the model in conjunction with optimisation techniques to inform service design and its applicability to other contexts

    A review of the healthcare-management (modeling) literature published at Manufacturing and Service Operations Management

    Get PDF
    Healthcare systems throughout the world are under pressure to widen access, improve efficiency and quality of care, and reduce inequity. Achieving these conflicting goals requires innovative approaches, utilizing new technologies, data analytics, and process improvements. The operations management community has taken on this challenge: more than 10% of articles published in M&SOM in the period from 2009 to 2018 has developed analytical models that aim to inform healthcare operational decisions and improve medical decision-making. This article presents a review of the research published in M&SOM on healthcare management since its inception 20 years ago and reflects on opportunities for further research

    Modeling and analysis to improve the quality of healthcare services

    Get PDF
    For many healthcare services or medical procedures, patients have extensive risk of complication or face death when treatment is delayed. When a queue is formed in such a situation, it is very important to assess the suffering and risk faced by patients in queue and plan sufficient medical capabilities in advance to address the concerns. As the diversity of care settings increases, congestion in facilities causes many patients to unnecessarily spend extra days in intensive care facilities. Performance evaluation of current healthcare service systems using queueing theory gains more and more importance because of patient flows and systems complexity. Queueing models have been used in handsome number of healthcare studies, but the incorporation of blocking is still limited. In this research work, we study an efficient two-stage multi-class queueing network system with blocking and phase-type service time distribution to analyze such congestion processes. We also consider parallel servers at each station and first-come-first-serve non-preemptive service discipline are used to improve the performance of healthcare service systems
    • …
    corecore