128 research outputs found

    Financial Markets Analysis by Probabilistic Fuzzy Modelling

    Get PDF
    For successful trading in financial markets, it is important to develop financial models where one can identify different states of the market for modifying one???s actions. In this paper, we propose to use probabilistic fuzzy systems for this purpose. We concentrate on Takagi???Sugeno (TS) probabilistic fuzzy systems that combine interpretability of fuzzy systems with the statistical properties of probabilistic systems. We start by recapitulating the general architecture of TS probabilistic fuzzy rule-based systems and summarize the corresponding reasoning schemes. We mention how probabilities can be estimated from a given data set and how a probability distribution can be approximated by a fuzzy histogram. We apply our methodology for financial time series analysis and demonstrate how a probabilistic TS fuzzy system can be identified, assuming that a linguistic term set is given. We illustrate the interpretability of such a system by inspecting the rule bases of our models.time series analysis;data-driven design;fuzzy reasoning;fuzzy rule base;probabilistic fuzzy systems

    Rule Optimization of Fuzzy Inference System Sugeno using Evolution Strategy for Electricity Consumption Forecasting

    Get PDF
    The need for accurate load forecasts will increase in the future because of the dramatic changes occurring in the electricity consumption. Sugeno fuzzy inference system (FIS) can be used for short-term load forecasting. However, challenges in the electrical load forecasting are the data used the data trend. Therefore, it is difficult to develop appropriate fuzzy rules for Sugeno FIS. This paper proposes Evolution Strategy method to determine appropriate rules for Sugeno FIS that have minimum forecasting error. Root Mean Square Error (RMSE) is used to evaluate the goodness of the forecasting result. The numerical experiments show the effectiveness of the proposed optimized Sugeno FIS for several test-case problems. The optimized Sugeno FIS produce lower RMSE comparable to those achieved by other well-known method in the literature

    Evolving integrated multi-model framework for on line multiple time series prediction

    Get PDF
    Time series prediction has been extensively researched in both the statistical and computational intelligence literature with robust methods being developed that can be applied across any given application domain. A much less researched problem is multiple time series prediction where the objective is to simultaneously forecast the values of multiple variables which interact with each other in time varying amounts continuously over time. In this paper we describe the use of a novel Integrated Multi-Model Framework (IMMF) that combined models developed at three di erent levels of data granularity, namely the Global, Local and Transductive models to perform multiple time series prediction. The IMMF is implemented by training a neural network to assign relative weights to predictions from the models at the three di erent levels of data granularity. Our experimental results indicate that IMMF signi cantly outperforms well established methods of time series prediction when applied to the multiple time series prediction problem

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Evolution strategies based coefficient of TSK fuzzy forecasting engine

    Get PDF
    Forecasting is a method of predicting past and current data, most often by pattern analysis. A Fuzzy Takagi Sugeno Kang (TSK) study can predict Indonesia's inflation rate, yet with too high error. This study proposes an accuracy improvement based on Evolution Strategies (ES), a specific evolutionary algorithm with good performance optimization problems. ES algorithm used to determine the best coefficient values on consequent fuzzy rules. This research uses Bank Indonesia time-series data as in the previous study. ES algorithm uses the popSize test to determine the number of initial chromosomes to produce the best optimal solution for this problem. The increase of popSize creates better fitness value due to the ES's broader search area. The RMSE of ES-TSK is 0.637, which outperforms the baseline approach. This research generally shows that ES may reduce repetitive experiment events due to Fuzzy coefficients' manual setting. The algorithm complexity may cost to the computing time, yet with higher performance

    Fuzzy Logic in Decision Support: Methods, Applications and Future Trends

    Get PDF
    During the last decades, the art and science of fuzzy logic have witnessed significant developments and have found applications in many active areas, such as pattern recognition, classification, control systems, etc. A lot of research has demonstrated the ability of fuzzy logic in dealing with vague and uncertain linguistic information. For the purpose of representing human perception, fuzzy logic has been employed as an effective tool in intelligent decision making. Due to the emergence of various studies on fuzzy logic-based decision-making methods, it is necessary to make a comprehensive overview of published papers in this field and their applications. This paper covers a wide range of both theoretical and practical applications of fuzzy logic in decision making. It has been grouped into five parts: to explain the role of fuzzy logic in decision making, we first present some basic ideas underlying different types of fuzzy logic and the structure of the fuzzy logic system. Then, we make a review of evaluation methods, prediction methods, decision support algorithms, group decision-making methods based on fuzzy logic. Applications of these methods are further reviewed. Finally, some challenges and future trends are given from different perspectives. This paper illustrates that the combination of fuzzy logic and decision making method has an extensive research prospect. It can help researchers to identify the frontiers of fuzzy logic in the field of decision making

    Forecasting the stock market index using artificial intelligence techniques

    Get PDF
    The weak form of Efficient Market hypothesis (EMH) states that it is impossible to forecast the future price of an asset based on the information contained in the historical prices of an asset. This means that the market behaves as a random walk and as a result makes forecasting impossible. Furthermore, financial forecasting is a difficult task due to the intrinsic complexity of the financial system. The objective of this work was to use artificial intelligence (AI) techniques to model and predict the future price of a stock market index. Three artificial intelligence techniques, namely, neural networks (NN), support vector machines and neuro-fuzzy systems are implemented in forecasting the future price of a stock market index based on its historical price information. Artificial intelligence techniques have the ability to take into consideration financial system complexities and they are used as financial time series forecasting tools. Two techniques are used to benchmark the AI techniques, namely, Autoregressive Moving Average (ARMA) which is linear modelling technique and random walk (RW) technique. The experimentation was performed on data obtained from the Johannesburg Stock Exchange. The data used was a series of past closing prices of the All Share Index. The results showed that the three techniques have the ability to predict the future price of the Index with an acceptable accuracy. All three artificial intelligence techniques outperformed the linear model. However, the random walk method outperfomed all the other techniques. These techniques show an ability to predict the future price however, because of the transaction costs of trading in the market, it is not possible to show that the three techniques can disprove the weak form of market efficiency. The results show that the ranking of performances support vector machines, neuro-fuzzy systems, multilayer perceptron neural networks is dependent on the accuracy measure used

    Forecasting the stock market index using artificial intelligence techniques

    Get PDF
    The weak form of Efficient Market hypothesis (EMH) states that it is impossible to forecast the future price of an asset based on the information contained in the historical prices of an asset. This means that the market behaves as a random walk and as a result makes forecasting impossible. Furthermore, financial forecasting is a difficult task due to the intrinsic complexity of the financial system. The objective of this work was to use artificial intelligence (AI) techniques to model and predict the future price of a stock market index. Three artificial intelligence techniques, namely, neural networks (NN), support vector machines and neuro-fuzzy systems are implemented in forecasting the future price of a stock market index based on its historical price information. Artificial intelligence techniques have the ability to take into consideration financial system complexities and they are used as financial time series forecasting tools. Two techniques are used to benchmark the AI techniques, namely, Autoregressive Moving Average (ARMA) which is linear modelling technique and random walk (RW) technique. The experimentation was performed on data obtained from the Johannesburg Stock Exchange. The data used was a series of past closing prices of the All Share Index. The results showed that the three techniques have the ability to predict the future price of the Index with an acceptable accuracy. All three artificial intelligence techniques outperformed the linear model. However, the random walk method outperfomed all the other techniques. These techniques show an ability to predict the future price however, because of the transaction costs of trading in the market, it is not possible to show that the three techniques can disprove the weak form of market efficiency. The results show that the ranking of performances support vector machines, neuro-fuzzy systems, multilayer perceptron neural networks is dependent on the accuracy measure used

    Fuzzy Logic and Its Uses in Finance: A Systematic Review Exploring Its Potential to Deal with Banking Crises

    Get PDF
    The major success of fuzzy logic in the field of remote control opened the door to its application in many other fields, including finance. However, there has not been an updated and comprehensive literature review on the uses of fuzzy logic in the financial field. For that reason, this study attempts to critically examine fuzzy logic as an effective, useful method to be applied to financial research and, particularly, to the management of banking crises. The data sources were Web of Science and Scopus, followed by an assessment of the records according to pre-established criteria and an arrangement of the information in two main axes: financial markets and corporate finance. A major finding of this analysis is that fuzzy logic has not yet been used to address banking crises or as an alternative to ensure the resolvability of banks while minimizing the impact on the real economy. Therefore, we consider this article relevant for supervisory and regulatory bodies, as well as for banks and academic researchers, since it opens the door to several new research axes on banking crisis analyses using artificial intelligence techniques
    corecore