37 research outputs found

    Robotic system for garment perception and manipulation

    Get PDF
    Mención Internacional en el título de doctorGarments are a key element of people’s daily lives, as many domestic tasks -such as laundry-, revolve around them. Performing such tasks, generally dull and repetitive, implies devoting many hours of unpaid labor to them, that could be freed through automation. But automation of such tasks has been traditionally hard due to the deformable nature of garments, that creates additional challenges to the already existing when performing object perception and manipulation. This thesis presents a Robotic System for Garment Perception and Manipulation that intends to address these challenges. The laundry pipeline as defined in this work is composed by four independent -but sequential- tasks: hanging, unfolding, ironing and folding. The aim of this work is the automation of this pipeline through a robotic system able to work on domestic environments as a robot household companion. Laundry starts by washing the garments, that then need to be dried, frequently by hanging them. As hanging is a complex task requiring bimanipulation skills and dexterity, a simplified approach is followed in this work as a starting point, by using a deep convolutional neural network and a custom synthetic dataset to study if a robot can predict whether a garment will hang or not when dropped over a hanger, as a first step towards a more complex controller. After the garment is dry, it has to be unfolded to ease recognition of its garment category for the next steps. The presented model-less unfolding method uses only color and depth information from the garment to determine the grasp and release points of an unfolding action, that is repeated iteratively until the garment is fully spread. Before storage, wrinkles have to be removed from the garment. For that purpose, a novel ironing method is proposed, that uses a custom wrinkle descriptor to locate the most prominent wrinkles and generate a suitable ironing plan. The method does not require a precise control of the light conditions of the scene, and is able to iron using unmodified ironing tools through a force-feedback-based controller. Finally, the last step is to fold the garment to store it. One key aspect when folding is to perform the folding operation in a precise manner, as errors will accumulate when several folds are required. A neural folding controller is proposed that uses visual feedback of the current garment shape, extracted through a deep neural network trained with synthetic data, to accurately perform a fold. All the methods presented to solve each of the laundry pipeline tasks have been validated experimentally on different robotic platforms, including a full-body humanoid robot.La ropa es un elemento clave en la vida diaria de las personas, no sólo a la hora de vestir, sino debido también a que muchas de las tareas domésticas que una persona debe realizar diariamente, como hacer la colada, requieren interactuar con ellas. Estas tareas, a menudo tediosas y repetitivas, obligan a invertir una gran cantidad de horas de trabajo no remunerado en su realización, las cuales podrían reducirse a través de su automatización. Sin embargo, automatizar dichas tareas ha sido tradicionalmente un reto, debido a la naturaleza deformable de las prendas, que supone una dificultad añadida a las ya existentes al llevar a cabo percepción y manipulación de objetos a través de robots. Esta tesis presenta un sistema robótico orientado a la percepción y manipulación de prendas, que pretende resolver dichos retos. La colada es una tarea doméstica compuesta de varias subtareas que se llevan a cabo de manera secuencial. En este trabajo, se definen dichas subtareas como: tender, desdoblar, planchar y doblar. El objetivo de este trabajo es automatizar estas tareas a través de un sistema robótico capaz de trabajar en entornos domésticos, convirtiéndose en un asistente robótico doméstico. La colada comienza lavando las prendas, las cuales han de ser posteriormente secadas, generalmente tendiéndolas al aire libre, para poder realizar el resto de subtareas con ellas. Tender la ropa es una tarea compleja, que requiere de bimanipulación y una gran destreza al manipular la prenda. Por ello, en este trabajo se ha optado por abordar una versión simplicada de la tarea de tendido, como punto de partida para llevar a cabo investigaciones más avanzadas en el futuro. A través de una red neuronal convolucional profunda y un conjunto de datos de entrenamiento sintéticos, se ha llevado a cabo un estudio sobre la capacidad de predecir el resultado de dejar caer una prenda sobre un tendedero por parte de un robot. Este estudio, que sirve como primer paso hacia un controlador más avanzado, ha resultado en un modelo capaz de predecir si la prenda se quedará tendida o no a partir de una imagen de profundidad de la misma en la posición en la que se dejará caer. Una vez las prendas están secas, y para facilitar su reconocimiento por parte del robot de cara a realizar las siguientes tareas, la prenda debe ser desdoblada. El método propuesto en este trabajo para realizar el desdoble no requiere de un modelo previo de la prenda, y utiliza únicamente información de profundidad y color, obtenida mediante un sensor RGB-D, para calcular los puntos de agarre y soltado de una acción de desdoble. Este proceso es iterativo, y se repite hasta que la prenda se encuentra totalmente desdoblada. Antes de almacenar la prenda, se deben eliminar las posibles arrugas que hayan surgido en el proceso de lavado y secado. Para ello, se propone un nuevo algoritmo de planchado, que utiliza un descriptor de arrugas desarrollado en este trabajo para localizar las arrugas más prominentes y generar un plan de planchado acorde a las condiciones de la prenda. A diferencia de otros métodos existentes, este método puede aplicarse en un entorno doméstico, ya que no requiere de un contol preciso de las condiciones de iluminación. Además, es capaz de usar las mismas herramientas de planchado que usaría una persona sin necesidad de realizar modificaciones a las mismas, a través de un controlador que usa realimentación de fuerza para aplicar una presión constante durante el planchado. El último paso al hacer la colada es doblar la prenda para almacenarla. Un aspecto importante al doblar prendas es ejecutar cada uno de los dobleces necesarios con precisión, ya que cada error o desfase cometido en un doblez se acumula cuando la secuencia de doblado está formada por varios dobleces consecutivos. Para llevar a cabo estos dobleces con la precisión requerida, se propone un controlador basado en una red neuronal, que utiliza realimentación visual de la forma de la prenda durante cada operación de doblado. Esta realimentación es obtenida a través de una red neuronal profunda entrenada con un conjunto de entrenamiento sintético, que permite estimar la forma en 3D de la parte a doblar a través de una imagen monocular de la misma. Todos los métodos descritos en esta tesis han sido validados experimentalmente con éxito en diversas plataformas robóticas, incluyendo un robot humanoide.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Abderrahmane Kheddar.- Secretario: Ramón Ignacio Barber Castaño.- Vocal: Karinne Ramírez-Amar

    Active Perception and Exploratory Robotics

    Get PDF
    Most past and present work in machine perception has involved extensive static analysis of passively sampled data. However, it should be axiomatic that perception is not passive, but active. Furthermore, most past and current robotics research use rather rigid assumptions, models about the world, objects and their relationships. It is not so difficult to see that these assumptions, most of the time, in realistic situations do not hold, and hence, the robots do not perform to the designer\u27s expectations. Perceptual activity is exploratory, which implies probing and searching. We do not just see, we look. We do not only touch, we feel. And in the course, our pupils adjust to the level of illumination, our eyes bring the world into sharp focus, our eyes converge or diverge, we move our heads or change our position to get a better view of something, and sometimes we even put on spectacles. Similarly, our hands adjust to the size of the object, to the surface coarseness and to the hardness or compliance of the material. This adaptiveness is crucial for survival in an uncertain, and generally, unfriendly world as millenia of experiments with different perceptual organizations have clearly demonstrated. Although no adequate account or theory of activity of perception has been presented by machine perception research, very recently, some researchers have recognized the value of actively probing the environment and emphasized the importance of data acquisition during the perception including head/eye movement. Because of the realization of today\u27s inadequacies of robotic performances, we in the GRASP laboratory at the University of Pennsylvania for the past five years have embarked on research in Active Perception and Exploratory Robotics. What follows is an expose of our theoretical foundation and some preliminary results. First, we shall describe what we mean by Active Perception, then we shall argue that Perception must also include manipulation, and finally, we will present Exploratory Robotics as a paradigm for extracting physical properties from an unknown environment

    Hand-Object Interaction: From Human Demonstrations to Robot Manipulation

    Get PDF
    Human-object interaction is of great relevance for robots to operate in human environments. However, state-of-the-art robotic hands are far from replicating humans skills. It is, therefore, essential to study how humans use their hands to develop similar robotic capabilities. This article presents a deep dive into hand-object interaction and human demonstrations, highlighting the main challenges in this research area and suggesting desirable future developments. To this extent, the article presents a general definition of the hand-object interaction problem together with a concise review for each of the main subproblems involved, namely: sensing, perception, and learning. Furthermore, the article discusses the interplay between these subproblems and describes how their interaction in learning from demonstration contributes to the success of robot manipulation. In this way, the article provides a broad overview of the interdisciplinary approaches necessary for a robotic system to learn new manipulation skills by observing human behavior in the real world
    corecore