504 research outputs found

    A Tabu Search hyper-heuristic strategy for t-way test suite generation

    Get PDF
    This paper proposes a novel hybrid t-way test generation strategy (where t indicates interaction strength), called High Level Hyper-Heuristic (HHH). HHH adopts Tabu Search as its high level meta-heuristic and leverages on the strength of four low level meta-heuristics, comprising of Teaching Learning based Optimization, Global Neighborhood Algorithm, Particle Swarm Optimization, and Cuckoo Search Algorithm. HHH is able to capitalize on the strengths and limit the deficiencies of each individual algorithm in a collective and synergistic manner. Unlike existing hyper-heuristics, HHH relies on three defined operators, based on improvement, intensification and diversification, to adaptively select the most suitable meta-heuristic at any particular time. Our results are promising as HHH manages to outperform existing t-way strategies on many of the benchmarks

    An experimental study of hyper-heuristic selection and acceptance mechanism for combinatorial t-way test suite generation

    Get PDF
    Recently, many meta-heuristic algorithms have been proposed to serve as the basis of a t -way test generation strategy (where t indicates the interaction strength) including Genetic Algorithms (GA), Ant Colony Optimization (ACO), Simulated Annealing (SA), Cuckoo Search (CS), Particle Swarm Optimization (PSO), and Harmony Search (HS). Although useful, metaheuristic algorithms that make up these strategies often require specific domain knowledge in order to allow effective tuning before good quality solutions can be obtained. Hyperheuristics provide an alternative methodology to meta-heuristics which permit adaptive selection and/or generation of meta-heuristics automatically during the search process. This paper describes our experience with four hyper-heuristic selection and acceptance mechanisms namely Exponential Monte Carlo with counter (EMCQ), Choice Function (CF), Improvement Selection Rules (ISR), and newly developed Fuzzy Inference Selection (FIS),using the t -way test generation problem as a case study. Based on the experimental results, we offer insights on why each strategy differs in terms of its performance

    GALP: A hybrid artificial intelligence algorithm for generating covering array

    Get PDF
    Today, there are a lot of useful algorithms for covering array (CA) generation, one of the branches of combinatorial testing. The major CA challenge is the generation of an array with the minimum number of test cases (efficiency) in an appropriate run-time (performance), for large systems. CA generation strategies are classified into several categories: computational and meta-heuristic, to name the most important ones. Generally, computational strategies have high performance and yield poor results in terms of efficiency, in contrast, meta-heuristic strategies have good efficiency and lower performance. Among the strategies available, some are efficient strategies but suffer from low performance; conversely, some others have good performance, but is not such efficient. In general, there is not a strategy that enjoys both above-mentioned metrics. In this paper, it is tried to combine the genetic algorithm and the Augmented Lagrangian Particle Swarm Optimization with Fractional Order Velocity to produce the appropriate test suite in terms of efficiency and performance. Also, a simple and effective minimizing function is employed to increase efficiency. The evaluation results show that the proposed strategy outperforms the existing approaches in terms of both efficiency and performance

    A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems

    Get PDF
    Hyper-heuristics are search methodologies that aim to provide high-quality solutions across a wide variety of problem domains, rather than developing tailor-made methodologies for each problem instance/domain. A traditional hyper-heuristic framework has two levels, namely, the high level strategy (heuristic selection mechanism and the acceptance criterion) and low level heuristics (a set of problem specific heuristics). Due to the different landscape structures of different problem instances, the high level strategy plays an important role in the design of a hyper-heuristic framework. In this paper, we propose a new high level strategy for a hyper-heuristic framework. The proposed high-level strategy utilizes a dynamic multiarmed bandit-extreme value-based reward as an online heuristic selection mechanism to select the appropriate heuristic to be applied at each iteration. In addition, we propose a gene expression programming framework to automatically generate the acceptance criterion for each problem instance, instead of using human-designed criteria. Two well-known, and very different, combinatorial optimization problems, one static (exam timetabling) and one dynamic (dynamic vehicle routing) are used to demonstrate the generality of the proposed framework. Compared with state-of-the-art hyper-heuristics and other bespoke methods, empirical results demonstrate that the proposed framework is able to generalize well across both domains. We obtain competitive, if not better results, when compared to the best known results obtained from other methods that have been presented in the scientific literature. We also compare our approach against the recently released hyper-heuristic competition test suite. We again demonstrate the generality of our approach when we compare against other methods that have utilized the same six benchmark datasets from this test suite

    Multi‐Objective Hyper‐Heuristics

    Get PDF
    Multi‐objective hyper‐heuristics is a search method or learning mechanism that operates over a fixed set of low‐level heuristics to solve multi‐objective optimization problems by controlling and combining the strengths of those heuristics. Although numerous papers on hyper‐heuristics have been published and several studies are still underway, most research has focused on single‐objective optimization. Work on hyper‐heuristics for multi‐objective optimization remains limited. This chapter draws attention to this area of research to help researchers and PhD students understand and reuse these methods. It also provides the basic concepts of multi‐objective optimization and hyper‐heuristics to facilitate a better understanding of the related research areas, in addition to exploring hyper‐heuristic methodologies that address multi‐objective optimization. Some design issues related to the development of hyper‐heuristic framework for multi‐objective optimization are discussed. The chapter concludes with a case study of multi‐objective selection hyper‐heuristics and its application on a real‐world problem

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    An investigation of multi-objective hyper-heuristics for multi-objective optimisation

    Get PDF
    In this thesis, we investigate and develop a number of online learning selection choice function based hyper-heuristic methodologies that attempt to solve multi-objective unconstrained optimisation problems. For the first time, we introduce an online learning selection choice function based hyperheuristic framework for multi-objective optimisation. Our multi-objective hyper-heuristic controls and combines the strengths of three well-known multi-objective evolutionary algorithms (NSGAII, SPEA2, and MOGA), which are utilised as the low level heuristics. A choice function selection heuristic acts as a high level strategy which adaptively ranks the performance of those low-level heuristics according to feedback received during the search process, deciding which one to call at each decision point. Four performance measurements are integrated into a ranking scheme which acts as a feedback learning mechanism to provide knowledge of the problem domain to the high level strategy. To the best of our knowledge, for the first time, this thesis investigates the influence of the move acceptance component of selection hyper-heuristics for multi-objective optimisation. Three multi-objective choice function based hyper-heuristics, combined with different move acceptance strategies including All-Moves as a deterministic move acceptance and the Great Deluge Algorithm (GDA) and Late Acceptance (LA) as a nondeterministic move acceptance function. GDA and LA require a change in the value of a single objective at each step and so a well-known hypervolume metric, referred to as D metric, is proposed for their applicability to the multi-objective optimisation problems. D metric is used as a way of comparing two non-dominated sets with respect to the objective space. The performance of the proposed multi-objective selection choice function based hyper-heuristics is evaluated on the Walking Fish Group (WFG) test suite which is a common benchmark for multi-objective optimisation. Additionally, the proposed approaches are applied to the vehicle crashworthiness design problem, in order to test its effectiveness on a realworld multi-objective problem. The results of both benchmark test problems demonstrate the capability and potential of the multi-objective hyper-heuristic approaches in solving continuous multi-objective optimisation problems. The multi-objective choice function Great Deluge Hyper-Heuristic (HHMO_CF_GDA) turns out to be the best choice for solving these types of problems

    Fuzzy Adaptive Tuning of a Particle Swarm Optimization Algorithm for Variable-Strength Combinatorial Test Suite Generation

    Full text link
    Combinatorial interaction testing is an important software testing technique that has seen lots of recent interest. It can reduce the number of test cases needed by considering interactions between combinations of input parameters. Empirical evidence shows that it effectively detects faults, in particular, for highly configurable software systems. In real-world software testing, the input variables may vary in how strongly they interact, variable strength combinatorial interaction testing (VS-CIT) can exploit this for higher effectiveness. The generation of variable strength test suites is a non-deterministic polynomial-time (NP) hard computational problem \cite{BestounKamalFuzzy2017}. Research has shown that stochastic population-based algorithms such as particle swarm optimization (PSO) can be efficient compared to alternatives for VS-CIT problems. Nevertheless, they require detailed control for the exploitation and exploration trade-off to avoid premature convergence (i.e. being trapped in local optima) as well as to enhance the solution diversity. Here, we present a new variant of PSO based on Mamdani fuzzy inference system \cite{Camastra2015,TSAKIRIDIS2017257,KHOSRAVANIAN2016280}, to permit adaptive selection of its global and local search operations. We detail the design of this combined algorithm and evaluate it through experiments on multiple synthetic and benchmark problems. We conclude that fuzzy adaptive selection of global and local search operations is, at least, feasible as it performs only second-best to a discrete variant of PSO, called DPSO. Concerning obtaining the best mean test suite size, the fuzzy adaptation even outperforms DPSO occasionally. We discuss the reasons behind this performance and outline relevant areas of future work.Comment: 21 page
    corecore