193 research outputs found

    Unit Commitment Problem in Electrical Power System: A Literature Review

    Get PDF
    Unit commitment (UC) is a popular problem in electric power system that aims at minimizing the total cost of power generation in a specific period, by defining an adequate scheduling of the generating units. The UC solution must respect many operational constraints. In the past half century, there was several researches treated the UC problem. Many works have proposed new formulations to the UC problem, others have offered several methodologies and techniques to solve the problem. This paper gives a literature review of UC problem, its mathematical formulation, methods for solving it and Different approaches developed for addressing renewable energy effects and uncertainties

    Resource Allocation for Periodic Traffic Demands in WDM Networks

    Get PDF
    Recent research has clearly established that holding-time-aware routing and wavelength assignment (RWA) schemes lead to significant improvements in resource utilization for scheduled traffic. By exploiting the knowledge of the demand holding times, this thesis proposes new traffic grooming techniques to achieve more efficient resource utilization with the goal of minimizing resources such as bandwidth, wavelength channels, transceivers, and energy consumption. This thesis also introduces a new model, the segmented sliding window model, where a demand may be decomposed into two or more components and each component can be sent separately. This technique is suitable for applications where continuous data transmission is not strictly required such as large file transfers for grid computing. Integer linear program (ILP) formulations and an efficient heuristic are put forward for resource allocation under the proposed segmented sliding window model. It is shown that the proposed model can lead to significantly higher throughput, even over existing holding-time-aware models

    Group-based optimization for parallel job scheduling in clusters via heuristic search

    Get PDF
    Job scheduling for parallel processing typically makes scheduling decisions on a per job basis due to the dynamic arrival of jobs. Such decision making provides limited options to find globally best schedules. Most research uses off-line optimization which is not realistic. We propose an optimization on the basis of limited-size dynamic job grouping per priority class. We apply heuristic domain-knowledge-based hi-level search and branch-and-bound methods to heavy workload traces to capture good schedules. Special plan-based conservative backfilling and shifting policies are used to augment the search. Our objective is to minimize average relative response times for long and medium job classes, while keeping utilization high. The scheduling algorithm is extended from the SCOJO-PECT coarse-grain pre-emptive time-sharing scheduler. The proposed scheduler was evaluated using real traces and Lublin-Feitelson synthetic workload model. The comparisons were made with the conservative SCOJO-PECT scheduler. The results are promising--the average relative response times were improved by 18-32 while still able to contain the loss of utilization within 2

    Large-scale dynamic observation planning for unmanned surface vessels

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2007.Includes bibliographical references (p. 129-134).With recent advances in research and technology, autonomous surface vessel capabilities have steadily increased. These autonomous surface vessel technologies enable missions and tasks to be performed without the direction of human operators, and have changed the way scientists and engineers approach problems. Because these robotic devices can work without manned guidance, they can execute missions that are too difficult, dangerous, expensive, or tedious for human operators to attempt. The United States government is currently expanding the use of autonomous surface vessel technologies through the United States Navy's Spartan Scout unmanned surface vessel (USV) and NASA's Ocean-Atmosphere Sensor Integration System (OASIS) USV. These USVs are well-suited to complete monotonous, dangerous, and time-consuming missions. The USVs provide better performance, lower cost, and reduced risk to human life than manned systems. In this thesis, we explore how to plan multiple USV observation schedules for two significant notional observation scenarios, collecting water temperatures ahead of the path of a hurricane, and collecting fluorometer readings to observe and track a harmful algal bloom.(cont.) A control system must be in place that coordinates a fleet of USVs to targets in an efficient manner. We develop three algorithms to solve the unmanned surface vehicle observation-planning problem. A greedy construction heuristic runs fastest, but produces suboptimal plans; a 3-phase algorithm which combines a greedy construction heuristic with an improvement phase and an insertion phase, requires more execution time, but generates significantly better plans; an optimal mixed integer programming algorithm produces optimal plans, but can only solve small problem instances.by John V. Miller.S.M

    From Parameter Tuning to Dynamic Heuristic Selection

    Get PDF
    The importance of balance between exploration and exploitation plays a crucial role while solving combinatorial optimization problems. This balance is reached by two general techniques: by using an appropriate problem solver and by setting its proper parameters. Both problems were widely studied in the past and the research process continues up until now. The latest studies in the field of automated machine learning propose merging both problems, solving them at design time, and later strengthening the results at runtime. To the best of our knowledge, the generalized approach for solving the parameter setting problem in heuristic solvers has not yet been proposed. Therefore, the concept of merging heuristic selection and parameter control have not been introduced. In this thesis, we propose an approach for generic parameter control in meta-heuristics by means of reinforcement learning (RL). Making a step further, we suggest a technique for merging the heuristic selection and parameter control problems and solving them at runtime using RL-based hyper-heuristic. The evaluation of the proposed parameter control technique on a symmetric traveling salesman problem (TSP) revealed its applicability by reaching the performance of tuned in online and used in isolation underlying meta-heuristic. Our approach provides the results on par with the best underlying heuristics with tuned parameters.:1 Introduction 1 1.1 Motivation 1 1.2 Research objective 2 1.3 Solution overview 2 2 Background and RelatedWork Analysis 3 2.1 Optimization Problems and their Solvers 3 2.2 Heuristic Solvers for Optimization Problems 9 2.3 Setting Algorithm Parameters 19 2.4 Combined Algorithm Selection and Hyper-Parameter Tuning Problem 27 2.5 Conclusion on Background and Related Work Analysis 28 3 Online Selection Hyper-Heuristic with Generic Parameter Control 31 3.1 Combined Parameter Control and Algorithm Selection Problem 31 3.2 Search Space Structure 32 3.3 Parameter Prediction Process 34 3.4 Low-Level Heuristics 35 3.5 Conclusion of Concept 36 4 Implementation Details 37 4.2 Search Space 40 4.3 Prediction Process 43 4.4 Low Level Heuristics 48 4.5 Conclusion 52 5 Evaluation 55 5.1 Optimization Problem 55 5.2 Environment Setup 56 5.3 Meta-heuristics Tuning 56 5.4 Concept Evaluation 60 5.5 Analysis of HH-PC Settings 74 5.6 Conclusion 79 6 Conclusion 81 7 FutureWork 83 7.1 Prediction Process 83 7.2 Search Space 84 7.3 Evaluations and Benchmarks 84 Bibliography 87 A Evaluation Results 99 A.1 Results in Figures 99 A.2 Results in numbers 10

    Power system scheduling in presence of renewable energy and energy storage

    Get PDF
    Power system scheduling problems like unit commitment and power dispatch methods have a vital role in the operation of electric power industry. Nowadays, global electricity consumption is growing rapidly while the supply of fossil fuels is dwindling and the concern about global warming is increasing. Therefore, power utilities are being forced to use hybrid power systems that consist of both conventional and renewable generation units. Optimum scheduling of such hybrid systems with Energy Storage Facilities (ESF) can ensure a consistent level of renewable power penetration throughout the operation periods, and thus, an economic, clean and energy efficient power generation can be achieved. Modelling of power system scheduling for hybrid power systems with ESF, optimization of such system’s scheduling and applications of scheduling under different scenarios are the main scopes of this thesis. The importance and applicability of this research are analyzed and illustrated by MATLAB simulations with the aid of suitable algorithms using the data of several hybrid test systems. It is shown that the proposed scheduling models led to effective utilization of the available resources resulting in significant savings in operation cost and reduction in pollutants emissions, etc. The proposed power dispatches on a hybrid system using IEEE-30 test bus data shows that more than 30% of fuel costs, pollutants emissions and transmission losses can be reduced with 30% renewable penetration. Moreover, more than 10% saving in fossil fuel utilization and above 50% pollutants emissions can be achieved if the proposed approach is applied to energy efficient power generation method with 15% of renewable penetration. This research will help the power utilities to use available energy resources effectively and encourage them to increase the utilization of green energy

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Market-based transmission congestion management using extended optimal power flow techniques

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 5/9/2001This thesis describes research into the problem of transmission congestion management. The causes, remedies, pricing methods, and other issues of transmission congestion are briefly reviewed. This research is to develop market-based approaches to cope with transmission congestion in real-time, short-run and long-run efficiently, economically and fairly. Extended OPF techniques have been playing key roles in many aspects of electricity markets. The Primal-Dual Interior Point Linear Programming and Quadratic Programming are applied to solve various optimization problems of congestion management proposed in the thesis. A coordinated real-time optimal dispatch method for unbundled electricity markets is proposed for system balancing and congestion management. With this method, almost all the possible resources in different electricity markets, including operating reserves and bilateral transactions, can be used to eliminate the real-time congestion according to their bids into the balancing market. Spot pricing theory is applied to real-time congestion pricing. Under the same framework, a Lagrangian Relaxation based region decomposition OPF algorithm is presented to deal with the problems of real-time active power congestion management across multiple regions. The inter/intra-regional congestion can be relieved without exchanging any information between regional ISOs but the Lagrangian Multipliers. In day-ahead spot market, a new optimal dispatch method is proposed for congestion and price risk management, particularly for bilateral transaction curtailment. Individual revenue adequacy constraints, which include payments from financial instruments, are involved in the original dispatch problem. An iterative procedure is applied to solve this special optimization problem with both primal and dual variables involved in its constraints. An optimal Financial Transmission Rights (FTR) auction model is presented as an approach to the long-term congestion management. Two types of series F ACTS devices are incorporated into this auction problem using the Power Injection Model to maximize the auction revenue. Some new treatment has been done on TCSC's operating limits to keep the auction problem linear
    corecore