1,677 research outputs found

    Telecommunications Network Planning and Maintenance

    Get PDF
    Telecommunications network operators are on a constant challenge to provide new services which require ubiquitous broadband access. In an attempt to do so, they are faced with many problems such as the network coverage or providing the guaranteed Quality of Service (QoS). Network planning is a multi-objective optimization problem which involves clustering the area of interest by minimizing a cost function which includes relevant parameters, such as installation cost, distance between user and base station, supported traffic, quality of received signal, etc. On the other hand, service assurance deals with the disorders that occur in hardware or software of the managed network. This paper presents a large number of multicriteria techniques that have been developed to deal with different kinds of problems regarding network planning and service assurance. The state of the art presented will help the reader to develop a broader understanding of the problems in the domain

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    A nonmonotone GRASP

    Get PDF
    A greedy randomized adaptive search procedure (GRASP) is an itera- tive multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications of the con- struction procedure yields different starting solutions for the local search and the best overall solution is kept as the result. The GRASP local search applies iterative improvement until a locally optimal solution is found. During this phase, starting from the current solution an improving neighbor solution is accepted and considered as the new current solution. In this paper, we propose a variant of the GRASP framework that uses a new “nonmonotone” strategy to explore the neighborhood of the current solu- tion. We formally state the convergence of the nonmonotone local search to a locally optimal solution and illustrate the effectiveness of the resulting Nonmonotone GRASP on three classical hard combinatorial optimization problems: the maximum cut prob- lem (MAX-CUT), the weighted maximum satisfiability problem (MAX-SAT), and the quadratic assignment problem (QAP)

    Solving mesh router nodes placement problem in Wireless Mesh Networks by Tabu Search algorithm

    Get PDF
    Wireless Mesh Networks (WMNs) are an important networking paradigm that offer cost effective Internet connectivity. The performance and operability of WMNs depend, among other factors, on the placement of network nodes in the area. Among the most important objectives in designing a WMN is the formation of a mesh backbone to achieve high user coverage. Given a number of router nodes to deploy, a deployment area and positions of client nodes in the area, an optimization problem can be formulated aiming to find the placement of router nodes so as to maximize network connectivity and user coverage. This optimization problem belongs to facility location problems, which are computationally hard to solve to optimality. In this paper we present the implementation and evaluation of Tabu Search (TS) for the problem of mesh router node placement in WMNs. The experimental evaluation showed the efficiency of TS in solving a benchmark of instances.Peer ReviewedPostprint (author's final draft

    Wireless Mesh Networks Based on MBPSO Algorithm to Improvement Throughput

    Get PDF
    Wireless Mesh Networks can be regarded as a type of communication technology in mesh topology in which wireless nodes interconnect with one another. Wireless Mesh Networks depending on the semi-static configuration in different paths among nodes such as PDR, E2E delay and throughput. This study summarized different types of previous heuristic algorithms in order to adapt with proper algorithm that could solve the issue. Therefore, the main objective of this study is to determine the proper methods, approaches or algorithms that should be adapted to improve the throughput. A Modified Binary Particle Swarm Optimization (MBPSO) approach was adapted to improvements the throughput. Finally, the finding shows that throughput increased by 5.79% from the previous study
    corecore