111 research outputs found

    Hypertableau Reasoning for Description Logics

    Full text link
    We present a novel reasoning calculus for the description logic SHOIQ^+---a knowledge representation formalism with applications in areas such as the Semantic Web. Unnecessary nondeterminism and the construction of large models are two primary sources of inefficiency in the tableau-based reasoning calculi used in state-of-the-art reasoners. In order to reduce nondeterminism, we base our calculus on hypertableau and hyperresolution calculi, which we extend with a blocking condition to ensure termination. In order to reduce the size of the constructed models, we introduce anywhere pairwise blocking. We also present an improved nominal introduction rule that ensures termination in the presence of nominals, inverse roles, and number restrictions---a combination of DL constructs that has proven notoriously difficult to handle. Our implementation shows significant performance improvements over state-of-the-art reasoners on several well-known ontologies

    And-or tableaux for fixpoint logics with converse: LTL, CTL, PDL and CPDL

    Get PDF
    Over the last forty years, computer scientists have invented or borrowed numerous logics for reasoning about digital systems. Here, I would like to concentrate on three of them: Linear Time Temporal Logic (LTL), branching time Computation Tree temporal Logic (CTL), and Propositional Dynamic Logic (PDL), with and without converse. More specifically, I would like to present results and techniques on how to solve the satisfiability problem in these logics, with global assumptions, using the tableau method. The issues that arise are the typical tensions between computational complexity, practicality and scalability. This is joint work with Linh Anh Nguyen, Pietro Abate, Linda Postniece, Florian Widmann and Jimmy Thomson

    Automated Synthesis of Tableau Calculi

    Full text link
    This paper presents a method for synthesising sound and complete tableau calculi. Given a specification of the formal semantics of a logic, the method generates a set of tableau inference rules that can then be used to reason within the logic. The method guarantees that the generated rules form a calculus which is sound and constructively complete. If the logic can be shown to admit finite filtration with respect to a well-defined first-order semantics then adding a general blocking mechanism provides a terminating tableau calculus. The process of generating tableau rules can be completely automated and produces, together with the blocking mechanism, an automated procedure for generating tableau decision procedures. For illustration we show the workability of the approach for a description logic with transitive roles and propositional intuitionistic logic.Comment: 32 page

    Reasoning with Very Expressive Fuzzy Description Logics

    Full text link
    It is widely recognized today that the management of imprecision and vagueness will yield more intelligent and realistic knowledge-based applications. Description Logics (DLs) are a family of knowledge representation languages that have gained considerable attention the last decade, mainly due to their decidability and the existence of empirically high performance of reasoning algorithms. In this paper, we extend the well known fuzzy ALC DL to the fuzzy SHIN DL, which extends the fuzzy ALC DL with transitive role axioms (S), inverse roles (I), role hierarchies (H) and number restrictions (N). We illustrate why transitive role axioms are difficult to handle in the presence of fuzzy interpretations and how to handle them properly. Then we extend these results by adding role hierarchies and finally number restrictions. The main contributions of the paper are the decidability proof of the fuzzy DL languages fuzzy-SI and fuzzy-SHIN, as well as decision procedures for the knowledge base satisfiability problem of the fuzzy-SI and fuzzy-SHIN
    • …
    corecore