31 research outputs found

    Safety Verification of Parameterized Systems under Release-Acquire

    Full text link
    We study the safety verification problem for parameterized systems under the release-acquire (RA) semantics. It has been shown that the problem is intractable for systems with unlimited access to atomic compare-and-swap (CAS) instructions. We show that, from a verification perspective where approximate results help, this is overly pessimistic. We study parameterized systems consisting of an unbounded number of environment threads executing identical but CAS-free programs and a fixed number of distinguished threads that are unrestricted. Our first contribution is a new semantics that considerably simplifies RA but is still equivalent for the above systems as far as safety verification is concerned. We apply this (general) result to two subclasses of our model. We show that safety verification is only \pspace-complete for the bounded model checking problem where the distinguished threads are loop-free. Interestingly, we can still afford the unbounded environment. We show that the complexity jumps to \nexp-complete for thread-modular verification where an unrestricted distinguished `ego' thread interacts with an environment of CAS-free threads plus loop-free distinguished threads (as in the earlier setting). Besides the usefulness for verification, the results are strong in that they delineate the tractability border for an established semantics

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 22nd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 29 papers presented in this volume were carefully reviewed and selected from 85 submissions. They deal with foundational research with a clear significance for software science

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Topics in Knowledge Bases: Epistemic Ontologies and Secrecy-preserving Reasoning

    Get PDF
    Applications of ontologies/knowledge bases (KBs) in many domains (healthcare, national security, intelligence) have become increasingly important. In this dissertation, we focus on developing techniques for answering queries posed to KBs under the open world assumption (OWA). In the first part of this dissertation, we study the problem of query answering in KBs that contain epistemic information, i.e., knowledge of different experts. We study ALCKm, which extends the description logic ALC by adding modal operators of the basic multi-modal logic Km. We develop a sound and complete tableau algorithm for answering ALCKm queries w.r.t. an ALCKm knowledge base with an acyclic TBox. We then consider answering ALCKm queries w.r.t. an ALCKm knowledge base in which the epistemic operators correspond to those of classical multi-modal logic S4m and provide a sound and complete tableau algorithm. Both algorithms can be implemented in PSpace. In the second part, we study problems that allow autonomous entities or organizations (collectively called querying agents) to be able to selectively share information. In this scenario, the KB must make sure its answers are informative but do not disclose sensitive information. Most of the work in this area has focused on access control mechanisms that prohibit access to sensitive information (secrets). However, such an approach can be too restrictive in that it prohibits the use of sensitive information in answering queries against knowledge bases even when it is possible to do so without compromising secrets. We investigate techniques for secrecy-preserving query answering (SPQA) against KBs under the OWA. We consider two scenarios of increasing difficulty: (a) a KB queried by a single agent; and (b) a KB queried by multiple agents where the secrecy policies can differ across the different agents and the agents can selectively communicate the answers that they receive from the KB with each other subject to the applicable answer sharing policies. We consider classes of KBs that are of interest from the standpoint of practical applications (e.g., description logics and Horn KBs). Given a KB and secrets that need to be protected against the querying agent(s), the SPQA problem aims at designing a secrecy-preserving reasoner that answers queries without compromising secrecy under OWA. Whenever truthfully answering a query risks compromising secrets, the reasoner is allowed to hide the answer to the query by feigning ignorance, i.e., answering the query as Unknown . Under the OWA, the querying agent is not able to infer whether an Unknown answer to a query is obtained because of the incomplete information in the KB or because secrecy protection mechanism is being applied. In each scenario, we provide a general framework for the problem. In the single-agent case, we apply the general framework to the description logic EL and provide algorithms for answering queries as informatively as possible without compromising secrecy. In the multiagent case, we extend the general framework for the single-agent case. To model the communication between querying agents, we use a communication graph, a directed acyclic graph (DAG) with self-loops, where each node represents an agent and each edge represents the possibility of information sharing in the direction of the edge. We discuss the relationship between secrecy-preserving reasoners and envelopes (used to protect secrets) and present a special case of the communication graph that helps construct tight envelopes in the sense that removing any information from them will leave some secrets vulnerable. To illustrate our general idea of constructing envelopes, Horn KBs are considered

    Polynomial-Time Reasoning Support for Design and Maintenance of Large-Scale Biomedical Ontologies

    Get PDF
    Description Logics (DLs) belong to a successful family of knowledge representation formalisms with two key assets: formally well-defined semantics which allows to represent knowledge in an unambiguous way and automated reasoning which allows to infer implicit knowledge from the one given explicitly. This thesis investigates various reasoning techniques for tractable DLs in the EL family which have been implemented in the CEL system. It suggests that the use of the lightweight DLs, in which reasoning is tractable, is beneficial for ontology design and maintenance both in terms of expressivity and scalability. The claim is supported by a case study on the renown medical ontology SNOMED CT and extensive empirical evaluation on several large-scale biomedical ontologies

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book
    corecore