4,982 research outputs found

    A tableau system for Quasi-hybrid logic

    Get PDF
    Hybrid logic is a valuable tool for specifying relational structures, at the same time that allows defining accessibility relations between states, it provides a way to nominate and make mention to what happens at each specific state. However, due to the many sources nowadays available, we may need to deal with contradictory information. This is the reason why we came with the idea of Quasi-hybrid logic, which is a paraconsistent version of hybrid logic capable of dealing with inconsistencies in the information, written as hybrid formulas. In [5] we have already developed a semantics for this paraconsistent logic. In this paper we go a step forward, namely we study its proof-theoretical aspects. We present a complete tableau system for Quasi-hybrid logic, by combining both tableaux for Quasi-classical and Hybrid logics

    Inductive Logic Programming in Databases: from Datalog to DL+log

    Full text link
    In this paper we address an issue that has been brought to the attention of the database community with the advent of the Semantic Web, i.e. the issue of how ontologies (and semantics conveyed by them) can help solving typical database problems, through a better understanding of KR aspects related to databases. In particular, we investigate this issue from the ILP perspective by considering two database problems, (i) the definition of views and (ii) the definition of constraints, for a database whose schema is represented also by means of an ontology. Both can be reformulated as ILP problems and can benefit from the expressive and deductive power of the KR framework DL+log. We illustrate the application scenarios by means of examples. Keywords: Inductive Logic Programming, Relational Databases, Ontologies, Description Logics, Hybrid Knowledge Representation and Reasoning Systems. Note: To appear in Theory and Practice of Logic Programming (TPLP).Comment: 30 pages, 3 figures, 2 tables

    Terminating Tableaux for Graded Hybrid Logic with Global Modalities and Role Hierarchies

    Full text link
    We present a terminating tableau calculus for graded hybrid logic with global modalities, reflexivity, transitivity and role hierarchies. Termination of the system is achieved through pattern-based blocking. Previous approaches to related logics all rely on chain-based blocking. Besides being conceptually simple and suitable for efficient implementation, the pattern-based approach gives us a NExpTime complexity bound for the decision procedure

    Completeness of Tableau Calculi for Two-Dimensional Hybrid Logics

    Full text link
    Hybrid logic is one of the extensions of modal logic. The many-dimensional product of hybrid logic is called hybrid product logic (HPL). We construct a sound and complete tableau calculus for two-dimensional HPL. Also, we made a tableau calculus for hybrid dependent product logic (HdPL), where one dimension depends on the other. In addition, we add a special rule to the tableau calculus for HdPL and show that it is still sound and complete. All of them lack termination, however.Comment: Version 2. 27 pages. 5 figures. This is a preprin

    Many-Valued Hybrid Logic

    Get PDF
    In this paper we define a family of many-valued semantics for hybrid logic, where each semantics is based on a finite Heyting algebra of truth-values. We provide sound and complete tableau systems for these semantics. Moreover, we show how the tableau systems can be made terminating and thereby give rise to decision procedures for the logics in question. Our many-valued hybrid logics turn out to be "intermediate" logics between intuitionistic hybrid logic and classical hybrid logic in a specific sense explained in the paper. Our results show that many-valued hybrid logic is indeed a natural enterprise

    Synthetic Completeness for a Terminating Seligman-Style Tableau System

    Get PDF
    Hybrid logic extends modal logic with nominals that name worlds. Seligman-style tableau systems for hybrid logic divide branches into blocks named by nominals to achieve a local proof style. We present a Seligman-style tableau system with a formalization in the proof assistant Isabelle/HOL. Our system refines an existing system to simplify formalization and we claim termination from this relationship. Existing completeness proofs that account for termination are either analytic or based on translation, but synthetic proofs have been shown to generalize to richer logics and languages. Our main result is the first synthetic completeness proof for a terminating hybrid logic tableau system. It is also the first formalized completeness proof for any hybrid logic proof system

    Proof theory for hybrid(ised) logics

    Get PDF
    Hybridisation is a systematic process along which the characteristic features of hybrid logic, both at the syntactic and the semantic levels, are developed on top of an arbitrary logic framed as an institution. In a series of papers this process has been detailed and taken as a basis for a specification methodology for reconfigurable systems. The present paper extends this work by showing how a proof calculus (in both a Hilbert and a tableau based format) for the hybridised version of a logic can be systematically generated from a proof calculus for the latter. Such developments provide the basis for a complete proof theory for hybrid(ised) logics, and thus pave the way to the development of (dedicated) proof support.The authors are grateful to Torben Bräuner for helpful, inspiring discussions, and to the anonymous referees for their detailed comments. This work is funded by ERDF—European Regional Development Fund, through the COMPETE Programme, and by National Funds through Fundação para a Ciência e a Tecnologia(FCT) within project PTDC/EEI-CTP/4836/2014. Moreover, the first and the second authors are sponsored by FCT grants SFRH/BD/52234/2013 and SFRH/BPD/103004/2014, respectively. M. Mar-tins is also supported by the EU FP7 Marie Curie PIRSES-GA-2012-318986 project GeTFun: Generalizing Truth-Functionality and FCT project UID/MAT/04106/2013 through CIDMA. L.Barbosa is further supported by FCT in the context of SFRH/B-SAB/113890/2015
    corecore