892 research outputs found

    A Benes Based NoC Switching Architecture for Mixed Criticality Embedded Systems

    Get PDF
    Multi-core, Mixed Criticality Embedded (MCE) real-time systems require high timing precision and predictability to guarantee there will be no interference between tasks. These guarantees are necessary in application areas such as avionics and automotive, where task interference or missed deadlines could be catastrophic, and safety requirements are strict. In modern multi-core systems, the interconnect becomes a potential point of uncertainty, introducing major challenges in proving behaviour is always within specified constraints, limiting the means of growing system performance to add more tasks, or provide more computational resources to existing tasks. We present MCENoC, a Network-on-Chip (NoC) switching architecture that provides innovations to overcome this with predictable, formally verifiable timing behaviour that is consistent across the whole NoC. We show how the fundamental properties of Benes networks benefit MCE applications and meet our architecture requirements. Using SystemVerilog Assertions (SVA), formal properties are defined that aid the refinement of the specification of the design as well as enabling the implementation to be exhaustively formally verified. We demonstrate the performance of the design in terms of size, throughput and predictability, and discuss the application level considerations needed to exploit this architecture

    A multicore processor for time-critical applications

    Get PDF

    Conflict-Free Networks on Chip for Real Time Systems

    Full text link
    [ES] La constante necesidad de un mayor rendimiento para cumplir con la gran demanda de potencia de cómputo de las nuevas aplicaciones, (ej. sistemas de conducción autónoma), obliga a la industria a apostar por la tecnología basada en Sistemas en Chip con Procesadores Multinúcleo (MPSoCs) en sus sistemas embebidos de seguridad-crítica. Los sistemas MPSoCs generalmente incluyen una red en el chip (NoC) para interconectar los núcleos de procesamiento entre ellos, con la memoria y con el resto de recursos compartidos. Desafortunadamente, el uso de las NoCs dificulta alcanzar la predecibilidad en el tiempo, ya que pueden aparecer conflictos en muchos puntos y de forma distribuida a nivel de red. Para afrontar este problema, en esta tesis se propone un nuevo paradigma de diseño para NoCs de tiempo real donde los conflictos en la red son eliminados por diseño. Este nuevo paradigma parte del Grafo de Dependencia de Canales (CDG) para evitar los conflictos de red de forma determinista. Nuestra solución es capaz de inyectar mensajes de forma natural usando un periodo TDM igual al límite teórico óptimo sin la necesidad de usar un proceso offline exigente computacionalmente. La red se ha integrado en un sistema multinúcleo basado en tiles y adaptado a su jerarquía de memoria. Como segunda contribución principal, proponemos un nuevo planificador dinámico y distribuido capaz de alcanzar un rendimiento pico muy cercanos a las NoC basadas en un diseño wormhole sin comprometer sus garantías de tiempo real. El planificador se basa en nuestro diseño de red para explotar sus propiedades clave. Los resultados de nuestra NoC muestran que nuestro diseño garantiza la predecibilidad en el tiempo evitando interferencias en la red entre múltiples aplicaciones ejecutándose concurrentemente. La red siempre garantiza el rendimiento y también mejora el rendimiento respecto al de las redes wormhole en una red 4 x 4 en un factor de 3,7x cuando se inyecta trafico para generar interferencias. En una red 8 x 8 las diferencias son incluso mayores. Además, la red obtiene un ahorro de área total del 10,79% frente a una implementación básica de una red wormhole. El planificador propuesto alcanza una mejora de rendimiento de 6,9x y 14,4x frente la versión básica de la red DCFNoC para redes en forma de malla de 16 y 64 nodos, respectivamente. Cuando lo comparamos frente a un conmutador estándar wormhole se preserva un rendimiento de red del 95% al mismo tiempo que preserva la estricta predecibilidad en el tiempo. Este logro abre la puerta a nuevos diseños de NoCs de alto rendimiento con predecibilidad en el tiempo. Como contribución final, construimos una taxonomía de NoCs basadas en TDM con propiedades de tiempo real. Con esta taxonomía realizamos un análisis exhaustivo para estudiar y comparar desde tiempos de respuesta, a implementaciones con bajo coste, pasando por soluciones de compromiso para diseños de NoCs de tiempo real. Como resultado, obtenemos nuevos diseños de NoCs basadas en TDM.[CA] La constant necessitat d'un major rendiment per a complir amb la gran demanda de potència de còmput de les noves aplicacions, (ex. sistemes de conducció autònoma), obliga la indústria a apostar per la tecnologia basada en Sistemes en Xip amb Processadors Multinucli (MPSoCs) en els seus sistemes embeguts de seguretat-crítica. Els sistemes MPSoCs generalment inclouen una xarxa en el xip (NoC) per a interconnectar els nuclis de processament entre ells, amb la memòria i amb la resta de recursos compartits. Desafortunadament, l'ús de les NoCs dificulta aconseguir la predictibilitat en el temps, ja que poden aparéixer conflictes en molts punts i de forma distribuïda a nivell de xarxa. Per a afrontar aquest problema, en aquesta tesi es proposa un nou paradigma de disseny per a NoCs de temps real on els conflictes en la xarxa són eliminats per disseny. Aquest nou paradigma parteix del Graf de Dependència de Canals (CDG) per a evitar els conflictes de xarxa de manera determinista. La nostra solució és capaç d'injectar missatges de mra natural fent ús d'un període TDM igual al límit teòric òptim sense la necessitat de fer ús d'un procés offline exigent computacionalment. La xarxa s'ha integrat en un sistema multinucli basat en tiles i adaptat a la seua jerarquia de memòria. Com a segona contribució principal, proposem un nou planificador dinàmic i distribuït capaç d'aconseguir un rendiment pic molt pròxims a les NoC basades en un disseny wormhole sense comprometre les seues garanties de temps real. El planificador es basa en el nostre disseny de xarxa per a explotar les seues propietats clau. Els resultats de la nostra NoC mostren que el nostre disseny garanteix la predictibilitat en el temps evitant interferències en la xarxa entre múltiples aplicacions executant-se concurrentment. La xarxa sempre garanteix el rendiment i també millora el rendiment respecte al de les xarxes wormhole en una xarxa 4 x 4 en un factor de 3,7x quan s'injecta trafic per a generar interferències. En una xarxa 8 x 8 les diferències són fins i tot majors. A més, la xarxa obté un estalvi d'àrea total del 10,79% front una implementació bàsica d'una xarxa wormhole. El planificador proposat aconsegueix una millora de rendiment de 6,9x i 14,4x front la versió bàsica de la xarxa DCFNoC per a xarxes en forma de malla de 16 i 64 nodes, respectivament. Quan ho comparem amb un commutador estàndard wormhole es preserva un rendiment de xarxa del 95% al mateix temps que preserva la estricta predictibilitat en el temps. Aquest assoliment obri la porta a nous dissenys de NoCs d'alt rendiment amb predictibilitat en el temps. Com a contribució final, construïm una taxonomia de NoCs basades en TDM amb propietats de temps real. Amb aquesta taxonomia realitzem una anàlisi exhaustiu per a estudiar i comparar des de temps de resposta, a implementacions amb baix cost, passant per solucions de compromís per a dissenys de NoCs de temps real. Com a resultat, obtenim nous dissenys de NoCs basades en TDM.[EN] The ever need for higher performance to cope with the high computational power demands of new applications (e.g autonomous driving systems), forces industry to support technology based on multi-processors system on chip (MPSoCs) in their safety-critical embedded systems. MPSoCs usually include a network-on-chip (NoC) to interconnect the cores between them and, with memory and the rest of shared resources. Unfortunately, the inclusion of NoCs difficults achieving time predictability as network-level conflicts may occur in many points in a distributed manner. To overcome this problem, this thesis proposes a new time-predictable NoC design paradigm where conflicts within the network are eliminated by design. This new paradigm builds on top of the Channel Dependency Graph (CDG) in order to deterministically avoid network conflicts. Our solution is able to naturally inject messages using a TDM period equal to the optimal theoretical bound without the need of using a computationally demanding offline process. The network is integrated in a tile-based manycore system and adapted to its memory hierarchy. As a second main contribution, we propose a novel distributed dynamic scheduler that is able to achieve peak performance close to a wormhole-based NoC design without compromising its real-time guarantees. The scheduler builds on top of our NoC design to exploit its key properties. The results of our NoC show that our design guarantees time predictability avoiding network interference among multiple running applications. The network always guarantees performance and also improves wormhole performance in a 4 x 4 setting by a factor of 3.7x when interference traffic is injected. For a 8 x 8 network differences are even larger. In addition, the network obtains a total area saving of 10.79% over a standard wormhole implementation. The proposed scheduler achieves an overall throughput improvement of 6.9x and 14.4x over a baseline conflict-free NoC for 16 and 64-node meshes, respectively. When compared against a standard wormhole router 95% of its network throughput is preserved while strict timing predictability is kept. This achievement opens the door to new high performance time predictable NoC designs. As a final contribution, we build a taxonomy of TDM-based NoCs with real-time properties. With this taxonomy we perform a comprehensive analysis to study and compare from response time specific, to low resource implementation cost, through trade-off solutions for real-time NoCs designs. As a result, we derive new TDM-based NoC designs.Picornell Sanjuan, T. (2021). Conflict-Free Networks on Chip for Real Time Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/177347TESI

    Composability and Predictability for Independent Application Development, Verification and Execution

    Get PDF
    System-on-chip (SOC) design gets increasingly complex, as a growing number of applications are integrated in modern systems. Some of these applications have real-time requirements, such as a minimum throughput or a maximum latency. To reduce cost, system resources are shared between applications, making their timing behavior inter-dependent. Real-time requirements must hence be verified for all possible combinations of concurrently executing applications, which is not feasible with commonly used simulation-based techniques. This chapter addresses this problem using two complexity-reducing concepts: composability and predictability. Applications in a composable system are completely isolated and cannot affect each other’s behaviors, enabling them to be independently verified. Predictable systems, on the other hand, provide lower bounds on performance, allowing applications to be verified using formal performance analysis. Five techniques to achieve composability and/or predictability in SOC resources are presented and we explain their implementation for processors, interconnect, and memories in our platform

    A low-energy rate-adaptive bit-interleaved passive optical network

    Get PDF
    Energy consumption of customer premises equipment (CPE) has become a serious issue in the new generations of time-division multiplexing passive optical networks, which operate at 10 Gb/s or higher. It is becoming a major factor in global network energy consumption, and it poses problems during emergencies when CPE is battery-operated. In this paper, a low-energy passive optical network (PON) that uses a novel bit-interleaving downstream protocol is proposed. The details about the network architecture, protocol, and the key enabling implementation aspects, including dynamic traffic interleaving, rate-adaptive descrambling of decimated traffic, and the design and implementation of a downsampling clock and data recovery circuit, are described. The proposed concept is shown to reduce the energy consumption for protocol processing by a factor of 30. A detailed analysis of the energy consumption in the CPE shows that the interleaving protocol reduces the total energy consumption of the CPE significantly in comparison to the standard 10 Gb/s PON CPE. Experimental results obtained from measurements on the implemented CPE prototype confirm that the CPE consumes significantly less energy than the standard 10 Gb/s PON CPE

    Scalable and bandwidth-efficient memory subsystem design for real-time systems

    Get PDF

    A Benes̆ Based NoC Switching Architecture for Mixed Criticality Embedded Systems

    Get PDF
    Multi-core, Mixed Criticality Embedded (MCE) real-time systems require high timing precision and predictability to guarantee there will be no interference between tasks. These guarantees are necessary in application areas such as avionics and automotive, where task interference or missed deadlines could be catastrophic, and safety requirements are strict. In modern multi-core systems, the interconnect becomes a potential point of uncertainty, introducing major challenges in proving behaviour is always within specified constraints, limiting the means of growing system performance to add more tasks, or provide more computational resources to existing tasks. We present MCENoC, a Network-on-Chip (NoC) switching architecture that provides innovations to overcome this with predictable, formally verifiable timing behaviour that is consistent across the whole NoC. We show how the fundamental properties of Benes networks benefit MCE applications and meet our architecture requirements. Using SystemVerilog Assertions (SVA), formal properties are defined that aid the refinement of the specification of the design as well as enabling the implementation to be exhaustively formally verified. We demonstrate the performance of the design in terms of size, throughput and predictability, and discuss the application level considerations needed to exploit this architecture
    • …
    corecore