1,903 research outputs found

    Bit Serial Systolic Architectures for Multiplicative Inversion and Division over GF(2<sup>m</sup>)

    Get PDF
    Systolic architectures are capable of achieving high throughput by maximizing pipelining and by eliminating global data interconnects. Recursive algorithms with regular data flows are suitable for systolization. The computation of multiplicative inversion using algorithms based on EEA (Extended Euclidean Algorithm) are particularly suitable for systolization. Implementations based on EEA present a high degree of parallelism and pipelinability at bit level which can be easily optimized to achieve local data flow and to eliminate the global interconnects which represent most important bottleneck in todays sub-micron design process. The net result is to have high clock rate and performance based on efficient systolic architectures. This thesis examines high performance but also scalable implementations of multiplicative inversion or field division over Galois fields GF(2m) in the specific case of cryptographic applications where field dimension m may be very large (greater than 400) and either m or defining irreducible polynomial may vary. For this purpose, many inversion schemes with different basis representation are studied and most importantly variants of EEA and binary (Stein's) GCD computation implementations are reviewed. A set of common as well as contrasting characteristics of these variants are discussed. As a result a generalized and optimized variant of EEA is proposed which can compute division, and multiplicative inversion as its subset, with divisor in either polynomial or triangular basis representation. Further results regarding Hankel matrix formation for double-basis inversion is provided. The validity of using the same architecture to compute field division with polynomial or triangular basis representation is proved. Next, a scalable unidirectional bit serial systolic array implementation of this proposed variant of EEA is implemented. Its complexity measures are defined and these are compared against the best known architectures. It is shown that assuming the requirements specified above, this proposed architecture may achieve a higher clock rate performance w. r. t. other designs while being more flexible, reliable and with minimum number of inter-cell interconnects. The main contribution at system level architecture is the substitution of all counter or adder/subtractor elements with a simpler distributed and free of carry propagation delays structure. Further a novel restoring mechanism for result sequences of EEA is proposed using a double delay element implementation. Finally, using this systolic architecture a CMD (Combined Multiplier Divider) datapath is designed which is used as the core of a novel systolic elliptic curve processor. This EC processor uses affine coordinates to compute scalar point multiplication which results in having a very small control unit and negligible with respect to the datapath for all practical values of m. The throughput of this EC based on this bit serial systolic architecture is comparable with designs many times larger than itself reported previously

    ASIC implementations of the Viterbi Algorithm

    Get PDF

    A Distributed System for Robot Manipulator Control, NSF Grant ECS-11879 Fourth Report

    Get PDF
    This is the fourth annual report representing our last year\u27s work under the current grant. This work was directed to the development of a distributed computer architecture to function as a force and motion server to a robot system. In the course of this work we developed a compliant contact sensor to provide for transitions between position and force control; developed an end-effector capable of securing a stable grasp on an object and a theory of grasping; developed and built a controller which minimizes control delays; explored a parallel kinematics algorithms for the controller; developed a consistent approach to the definition of motion both in joint coordinates and in Cartesian coordinates; developed a symbolic simplification software package to generate the dynamics equations of a manipulator such that the calculations may be split between background and foreground

    A novel soft cardiac assist device based on a dielectric elastomer augmented aorta: an in vivo study

    Get PDF
    Although heart transplant is the preferred solution for patients suffering from heart failures, cardiac assist devices remain key substitute therapies. Among them, aortic augmentation using dielectric elastomer actuators (DEAs) might be an alternative technological application for the future. The electrically driven actuator does not require bulky pneumatic elements (such as conventional intra-aortic balloon pumps) and conforms tightly to the aorta thanks to the manufacturing method presented here. In this study, the proposed DEA-based device replaces a section of the aorta and acts as a counterpulsation device. The feasibility and validation of in vivo implantation of the device into the descending aorta in a porcine model, and the level of support provided to the heart are investigated. Additionally, the influence of the activation profile and delay compared to the start of systole is studied. We demonstrate that an activation of the DEA just before the start of systole (30 ms at 100 bpm) and deactivation just after the start of diastole (0-30 ms) leads to an optimal assistance of the heart with a maximum energy provided by the DEA. The end-diastolic and left ventricular pressures were lowered by up to 5% and 1%, respectively, compared to baseline. The early diastolic pressure was augmented in average by up to 2%

    Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors

    Get PDF
    Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors. Am J Physiol Heart Circ Physiol 304: H1455-H1470, 2013. First published March 15, 2013; doi:10.1152/ajpheart.00539.2012.-Atherosclerosis is a systemic disease with local manifestations. Low-density lipoprotein (LDL) accumulation in the subendothelial layer is one of the hallmarks of atherosclerosis onset and ignites plaque development and progression. Blood flow-induced endothelial shear stress (ESS) is causally related to the heterogenic distribution of atherosclerotic lesions and critically affects LDL deposition in the vessel wall. In this work we modeled blood flow and LDL transport in the coronary arterial wall and investigated the influence of several hemodynamic and biological factors that may regulate LDL accumulation. We used a three-dimensional model of a stenosed right coronary artery reconstructed from angiographic and intravascular ultrasound patient data. We also reconstructed a second model after restoring the patency of the stenosed lumen to its nondiseased state to assess the effect of the stenosis on LDL accumulation

    High sample-rate Givens rotations for recursive least squares

    Get PDF
    The design of an application-specific integrated circuit of a parallel array processor is considered for recursive least squares by QR decomposition using Givens rotations, applicable in adaptive filtering and beamforming applications. Emphasis is on high sample-rate operation, which, for this recursive algorithm, means that the time to perform arithmetic operations is critical. The algorithm, architecture and arithmetic are considered in a single integrated design procedure to achieve optimum results. A realisation approach using standard arithmetic operators, add, multiply and divide is adopted. The design of high-throughput operators with low delay is addressed for fixed- and floating-point number formats, and the application of redundant arithmetic considered. New redundant multiplier architectures are presented enabling reductions in area of up to 25%, whilst maintaining low delay. A technique is presented enabling the use of a conventional tree multiplier in recursive applications, allowing savings in area and delay. Two new divider architectures are presented showing benefits compared with the radix-2 modified SRT algorithm. Givens rotation algorithms are examined to determine their suitability for VLSI implementation. A novel algorithm, based on the Squared Givens Rotation (SGR) algorithm, is developed enabling the sample-rate to be increased by a factor of approximately 6 and offering area reductions up to a factor of 2 over previous approaches. An estimated sample-rate of 136 MHz could be achieved using a standard cell approach and O.35pm CMOS technology. The enhanced SGR algorithm has been compared with a CORDIC approach and shown to benefit by a factor of 3 in area and over 11 in sample-rate. When compared with a recent implementation on a parallel array of general purpose (GP) DSP chips, it is estimated that a single application specific chip could offer up to 1,500 times the computation obtained from a single OP DSP chip

    Cryptographic primitives on reconfigurable platforms.

    Get PDF
    Tsoi Kuen Hung.Thesis (M.Phil.)--Chinese University of Hong Kong, 2002.Includes bibliographical references (leaves 84-92).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivation --- p.1Chapter 1.2 --- Objectives --- p.3Chapter 1.3 --- Contributions --- p.3Chapter 1.4 --- Thesis Organization --- p.4Chapter 2 --- Background and Review --- p.6Chapter 2.1 --- Introduction --- p.6Chapter 2.2 --- Cryptographic Algorithms --- p.6Chapter 2.3 --- Cryptographic Applications --- p.10Chapter 2.4 --- Modern Reconfigurable Platforms --- p.11Chapter 2.5 --- Review of Related Work --- p.14Chapter 2.5.1 --- Montgomery Multiplier --- p.14Chapter 2.5.2 --- IDEA Cipher --- p.16Chapter 2.5.3 --- RC4 Key Search --- p.17Chapter 2.5.4 --- Secure Random Number Generator --- p.18Chapter 2.6 --- Summary --- p.19Chapter 3 --- The IDEA Cipher --- p.20Chapter 3.1 --- Introduction --- p.20Chapter 3.2 --- The IDEA Algorithm --- p.21Chapter 3.2.1 --- Cipher Data Path --- p.21Chapter 3.2.2 --- S-Box: Multiplication Modulo 216 + 1 --- p.23Chapter 3.2.3 --- Key Schedule --- p.24Chapter 3.3 --- FPGA-based IDEA Implementation --- p.24Chapter 3.3.1 --- Multiplication Modulo 216 + 1 --- p.24Chapter 3.3.2 --- Deeply Pipelined IDEA Core --- p.26Chapter 3.3.3 --- Area Saving Modification --- p.28Chapter 3.3.4 --- Key Block in Memory --- p.28Chapter 3.3.5 --- Pipelined Key Block --- p.30Chapter 3.3.6 --- Interface --- p.31Chapter 3.3.7 --- Pipelined Design in CBC Mode --- p.31Chapter 3.4 --- Summary --- p.32Chapter 4 --- Variable Radix Montgomery Multiplier --- p.33Chapter 4.1 --- Introduction --- p.33Chapter 4.2 --- RSA Algorithm --- p.34Chapter 4.3 --- Montgomery Algorithm - Ax B mod N --- p.35Chapter 4.4 --- Systolic Array Structure --- p.36Chapter 4.5 --- Radix-2k Core --- p.37Chapter 4.5.1 --- The Original Kornerup Method (Bit-Serial) --- p.37Chapter 4.5.2 --- The Radix-2k Method --- p.38Chapter 4.5.3 --- Time-Space Relationship of Systolic Cells --- p.38Chapter 4.5.4 --- Design Correctness --- p.40Chapter 4.6 --- Implementation Details --- p.40Chapter 4.7 --- Summary --- p.41Chapter 5 --- Parallel RC4 Engine --- p.42Chapter 5.1 --- Introduction --- p.42Chapter 5.2 --- Algorithms --- p.44Chapter 5.2.1 --- RC4 --- p.44Chapter 5.2.2 --- Key Search --- p.46Chapter 5.3 --- System Architecture --- p.47Chapter 5.3.1 --- RC4 Cell Design --- p.47Chapter 5.3.2 --- Key Search --- p.49Chapter 5.3.3 --- Interface --- p.50Chapter 5.4 --- Implementation --- p.50Chapter 5.4.1 --- RC4 cell --- p.51Chapter 5.4.2 --- Floorplan --- p.53Chapter 5.5 --- Summary --- p.53Chapter 6 --- Blum Blum Shub Random Number Generator --- p.55Chapter 6.1 --- Introduction --- p.55Chapter 6.2 --- RRNG Algorithm . . --- p.56Chapter 6.3 --- PRNG Algorithm --- p.58Chapter 6.4 --- Architectural Overview --- p.59Chapter 6.5 --- Implementation --- p.59Chapter 6.5.1 --- Hardware RRNG --- p.60Chapter 6.5.2 --- BBS PRNG --- p.61Chapter 6.5.3 --- Interface --- p.66Chapter 6.6 --- Summary --- p.66Chapter 7 --- Experimental Results --- p.68Chapter 7.1 --- Design Platform --- p.68Chapter 7.2 --- IDEA Cipher --- p.69Chapter 7.2.1 --- Size of IDEA Cipher --- p.70Chapter 7.2.2 --- Performance of IDEA Cipher --- p.70Chapter 7.3 --- Variable Radix Systolic Array --- p.71Chapter 7.4 --- Parallel RC4 Engine --- p.75Chapter 7.5 --- BBS Random Number Generator --- p.76Chapter 7.5.1 --- Size --- p.76Chapter 7.5.2 --- Speed --- p.76Chapter 7.5.3 --- External Clock --- p.77Chapter 7.5.4 --- Random Performance --- p.78Chapter 7.6 --- Summary --- p.78Chapter 8 --- Conclusion --- p.81Chapter 8.1 --- Future Development --- p.83Bibliography --- p.8

    Selected Papers from the First International Symposium on Future ICT (Future-ICT 2019) in Conjunction with 4th International Symposium on Mobile Internet Security (MobiSec 2019)

    Get PDF
    The International Symposium on Future ICT (Future-ICT 2019) in conjunction with the 4th International Symposium on Mobile Internet Security (MobiSec 2019) was held on 17–19 October 2019 in Taichung, Taiwan. The symposium provided academic and industry professionals an opportunity to discuss the latest issues and progress in advancing smart applications based on future ICT and its relative security. The symposium aimed to publish high-quality papers strictly related to the various theories and practical applications concerning advanced smart applications, future ICT, and related communications and networks. It was expected that the symposium and its publications would be a trigger for further related research and technology improvements in this field
    • …
    corecore