26 research outputs found

    Implicit Incremental Model Analyses and Transformations

    Get PDF
    When models of a system change, analyses based on them have to be reevaluated in order for the results to stay meaningful. In many cases, the time to get updated analysis results is critical. This thesis proposes multiple, combinable approaches and a new formalism based on category theory for implicitly incremental model analyses and transformations. The advantages of the implementation are validated using seven case studies, partially drawn from the Transformation Tool Contest (TTC)

    09501 Abstracts Collection -- Software Synthesis

    Get PDF
    From 06.12.09 to 11.12.09, the Dagstuhl Seminar 09501 ``Software Synthesis \u27\u27 in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Quality of Service Aware Data Stream Processing for Highly Dynamic and Scalable Applications

    Get PDF
    Huge amounts of georeferenced data streams are arriving daily to data stream management systems that are deployed for serving highly scalable and dynamic applications. There are innumerable ways at which those loads can be exploited to gain deep insights in various domains. Decision makers require an interactive visualization of such data in the form of maps and dashboards for decision making and strategic planning. Data streams normally exhibit fluctuation and oscillation in arrival rates and skewness. Those are the two predominant factors that greatly impact the overall quality of service. This requires data stream management systems to be attuned to those factors in addition to the spatial shape of the data that may exaggerate the negative impact of those factors. Current systems do not natively support services with quality guarantees for dynamic scenarios, leaving the handling of those logistics to the user which is challenging and cumbersome. Three workloads are predominant for any data stream, batch processing, scalable storage and stream processing. In this thesis, we have designed a quality of service aware system, SpatialDSMS, that constitutes several subsystems that are covering those loads and any mixed load that results from intermixing them. Most importantly, we natively have incorporated quality of service optimizations for processing avalanches of geo-referenced data streams in highly dynamic application scenarios. This has been achieved transparently on top of the codebases of emerging de facto standard best-in-class representatives, thus relieving the overburdened shoulders of the users in the presentation layer from having to reason about those services. Instead, users express their queries with quality goals and our system optimizers compiles that down into query plans with an embedded quality guarantee and leaves logistic handling to the underlying layers. We have developed standard compliant prototypes for all the subsystems that constitutes SpatialDSMS

    Implicit Incremental Model Analyses and Transformations

    Get PDF
    In vielen Ingenieursdisziplinen werden Modelle verwendet, um Systeme verschiedenster Art auf einem hohen Abstraktionsgrad zu beschreiben. Auf diesem Abstraktionsgrad ist es häufig einfacher, Aussagen über den Zustand des Systems zu treffen. Wenn sich Modelle eines Systems ändern – beispielsweise, weil sich das System selbst geändert hat – müssen Analysen auf Grundlage dieses Modells jedoch neu berechnet werden, um weiterhin gültig zu sein. In vielen Fällen ist diese Neuberechnung der Analyseergebnisse zeitkritisch. Da sich oft nur kleine Teile des Modells ändern, könnten zwar große Teile des letzten Analysedurchlaufs durch eine inkrementelle Ausführung der Analyse wiederverwendet werden, in der Praxis ist eine solche Inkrementalisierung aber nicht trivial und oft fehleranfällig. Eine Lösungsmöglichkeit für dieses Problem bietet der Ansatz der impliziten Inkrementalisierung, bei der ein inkrementeller Algorithmus für eine gegebene Analyse aus der Batch-Spezifikation abgeleitet wird. Aus der Spezifikation wird ein dynamischer Abhängigkeitsgraph konstruiert, der es erlaubt, nur die Teile einer Analyse neu auszuwerten, die von einer Änderung tatsächlich betroffen sind. Damit lassen sich Vorteile einer Inkrementalisierung nutzen, ohne dass der Code angepasst werden muss und die Lesbarkeit des Analysecodes leidet. Leider unterstützen derzeitige Verfahren für implizite Inkrementalisierung nur eine bestimmte Klasse von Analysen, sind auf eine Inkrementalisierung auf Ebene von einzelnen Instruktionen beschränkt oder benötigen eine explizite Zustandsverwaltung. Auch mit diesen Verbesserungen ist unklar, in welchen Fällen eine Inkrementalisierung Vorteile bringt, da in einigen Szenarien Änderungen Schmetterlingseffekte verursachen können und eine Wiederverwertung des letzten Analysedurchlaufs keinerlei Beschleunigungspotential hat. Diese Dissertation behandelt diese Probleme bei impliziter Inkrementalisierung von Modellanalysen mittels mehrerer Verfahren, die größtenteils kombinierbar sind. Desweiteren wird ein neuer Formalismus vorgestellt, mit dessen Hilfe Inkrementalisierungssysteme auch für uni- oder bidirektionale Modelltransformationen einsetzbar sind. Um die Korrektheit der entstehenden inkrementellen Modellanalysen zu definieren und zu zeigen, wird Inkrementalisierung in Kategorientheorie als Funktor beschrieben. Ein erstes Verfahren ermöglicht als direkte Konsequenz der formalen Darstellung die Inkrementalisierung auf Ebene von Methodenaufrufen, sodass für häufig verwendete Operatoren eine optimierte Inkrementalisierung zur Verfügung gestellt werden kann. Durch Erweiterung des Funktors auf Verteilung lassen sich auf ähnliche Weise auch etwaige Speicherprobleme lösen. Ein zweites Verfahren vereinfacht die entstehenden dynamischen Abhängigkeitsgraphen, indem Teile der Analyse durch eine generalisierte Betrachtung von Modelländerungen mit mehreren Strategien zusammengefasst werden können. Die Auswahl der Strategien ermöglicht dem Entwickler eine Anpassung der Inkrementalisierung auf einen konkreten Anwendungsfall. Alternativ kann für ein gegebenes Szenario auch durch automatische Entwurfsraumexploration eine (Pareto-) optimale Konfiguration hinsichtlich Speicherverbrauch und Antwortzeit der Aktualisierung eines Analyseergebnisses nach einer Modelländerung gefunden werden. Die Kombination dieser Verfahren ermöglicht es, die Performanz von Inkrementalisierungen so zu verbessern, dass diese bis auf einmalige Initialisierung nie schlechter ist als die batchmäßige Wiederholung der Analyse, in vielen Fällen aber teils deutlich schneller sein kann. Generische Operatoren, die in vielen Modellanalysen wiederverwendet werden, können für die Inkrementalisierung durch geeignete Algorithmen spezifisch optimiert werden, während komplexe Domänenlogik durch das System optimiert werden kann. Durch den impliziten Ansatz geschehen diese Verbesserungen vollautomatisch und transparent für den Entwickler der Modellanalyse. Obwohl der so geschaffene Ansatz Turing-mächtig und somit universell einsetzbar ist, gibt es doch gerade in der modellgetriebenen Entwicklung eine Klasse von Artefakten, die eine besondere Betrachtung erfordern, da sie sich im Allgemeinen nur schwer mit gewöhnlichen objekt-orientierten Sprachen beschreiben lassen: Modelltransformationen. Daher wird in dieser Dissertation ein neuer Formalismus und eine darauf aufbauende Sprache vorgestellt, die Modelltransformationen so beschreiben, dass diese leicht mit Hilfe eines Inkrementalisierungssystems inkrementell ausgeführt werden können. Die Synchronisierung einer Modelländerung ist hierbei bewiesen korrekt und hippokratisch. Alle Verfahren wurden implementiert und in das .NET Modeling Framework integriert, welches Entwickler auf der .NET Plattform bei der modellgetriebenen Entwicklung unterstützen soll. Die entstandenen Vorteile aller Verfahren hinsichtlich Performanz werden anhand von sieben Fallstudien in verschiedenen Domänen validiert. Insbesondere werden hierzu fünf Fallstudien des Transformation Tool Contests (TTC) der Jahre 2015 bis 2017 herangezogen, für die auch mit anderen Ansätzen verfasste Lösungen zur Verfügung stehen. Die Ausdrucksmächtigkeit der Modelltransformationssprache wird durch eine Transformation der in der modellgetriebenen Entwicklung weit verbreiteten Transformationssprache ATL in die neu geschaffene Transformationssprache validiert. Mithilfe dieser Transformation wird weiterhin die Ausführungsgeschwindigkeit von Modelltransformationen mit der von ATL in einigen Modelltransformationen verglichen. Die Ergebnisse aus den Fallstudien zeigen gerade bei der Anwendung des Inkrementalisierungssystems auf Modelltransformationen deutliche Performance-Steigerungen im Vergleich zu herkömmlichen Modelltransformationen, aber auch gegenüber anderen inkrementellen Modelltransformationssprachen zeigt der vorgestellte Ansatz deutliche Beschleunigungen, teils um mehrere Größenordnungen. Insbesondere weisen die Fallstudien darauf hin, dass die benötigte Zeit für die Propagation von Änderungen des Eingabemodells in vielen Fällen unabhängig von der Größe des Eingabemodells ist. Gerade bei großen Eingabemodellen kommen so sehr hohe Beschleunigungen zustande. Die Inkrementalisierung einer Analyse ist dabei immer an das Metamodell gebunden. In der Praxis verwenden aber die meisten eingesetzten Metamodelle nur den eingeschränkten Modellierungsstandard EMOF, der teilweise zu einer unnötigen Komplexität des Metamodells führt und viele Analysen überhaupt erst notwendig macht. Eine Erweiterung des Modellierungsstandards kann hier einige Klassen von Modellanalysen komplett überflüssig machen und andere Analysen deutlich vereinfachen, sowie auch die Performance der entsprechenden Analyse beschleunigen

    Some advances in the polyhedral model

    Get PDF
    Department Head: L. Darrell Whitley.2010 Summer.Includes bibliographical references.The polyhedral model is a mathematical formalism and a framework for the analysis and transformation of regular computations. It provides a unified approach to the optimization of computations from different application domains. It is now gaining wide use in optimizing compilers and automatic parallelization. In its purest form, it is based on a declarative model where computations are specified as equations over domains defined by "polyhedral sets". This dissertation presents two results. First is an analysis and optimization technique that enables us to simplify---reduce the asymptotic complexity---of such equations. The second is an extension of the model to richer domains called Ƶ-Polyhedra. Many equational specifications in the polyhedral model have reductions---application of an associative and commutative operator to collections of values to produce a collection of answers. Moreover, expressions in such equations may also exhibit reuse where intermediate values that are computed or used at different index points are identical. We develop various compiler transformations to automatically exploit this reuse and simplify the computational complexity of the specification. In general, there is an infinite set of applicable simplification transformations. Unfortunately, different choices may result in equivalent specifications with different asymptotic complexity. We present an algorithm for the optimal application of simplification transformations resulting in a final specification with minimum complexity. This dissertation also presents the Ƶ-Polyhedral model, an extension to the polyhedral model to more general sets, thereby providing a transformation framework for a larger set of regular computations. For this, we present a novel representation and interpretation of Ƶ-Polyhedra and prove a number of properties of the family of unions of Ƶ-Polyhedra that are required to extend the polyhedral model. Finally, we present value based dependence analysis and scheduling analysis for specifications in the Ƶ-Polyhedral model. These are direct extensions of the corresponding analyses of specifications in the polyhedral model. One of the benefits of our results in the Ƶ-Polyhedral model is that our abstraction allows the reuse of previously developed tools in the polyhedral model with straightforward pre- and post-processing

    Concurrency and Distribution in Reactive Programming

    Get PDF
    Distributed Reactive Programming is a paradigm for implementing distributed interactive applications modularly and declaratively. Applications are defined as dynamic distributed dataflow graphs of reactive computations that depend upon each other, similar to formulae in spreadsheets. A runtime library propagates input changes through the dataflow graph, recomputing the results of affected dependent computations while adapting the dataflow graph topology to changing dependency relations on the fly. Reactive Programming has been shown to improve code quality, program comprehension and maintainability over modular interactive application designs based on callbacks. Part of what makes Reactive Programming easy to use is its synchronous change propagation semantics: Changes are propagated such that no computation can ever observe an only partially updated state of the dataflow graph, i.e., each input change together with all dependent recomputations appears to be instantaneous. Traditionally, in local single-threaded applications, synchronous semantics are achieved through glitch freedom consistency: a recomputation may be executed only after all its dependencies have been recomputed. In distributed applications though, this established approach breaks in two ways. First, glitch freedom implies synchronous semantics only if change propagations execute in isolation. Distributed applications are inherently exposed to concurrency in that multiple threads may propagate different changes concurrently. Ensuring isolation between concurrent change propagations requires the integration of additional algorithms for concurrency control. Second, applications’ dataflow graphs are spread across multiple hosts. Therefore, distributed reactive programming requires algorithms for both glitch freedom and concurrency control that are decentralized, i.e., function without access to shared memory. A comprehensive survey of related prior works shows, that none have managed to solve this issue so far. This dissertation introduces FrameSweep, the first algorithm to provide synchronous propagation semantics for concurrent change propagation over dynamic distributed dataflow graphs. FrameSweep provides isolation and glitch freedom through a combination of fine-grained concurrency control algorithms for linearizability and serializability from databases with several aspects of change propagation algorithms from Reactive Programming and Automatic Incrementalization. The correctness of FrameSweep is formally proven through the application of multiversion concurrency control theory. FrameSweep decentralizes all its algorithmic components, and can therefore be integrated into any reactive programming library in a syntactically transparent manner: Applications can continue to use the same syntax for Reactive Programming as before, without requiring any adaptations of their code. FrameSweep therefore provides the exact same semantics as traditional local single-threaded Reactive Programming through the exact same syntax. As a result, FrameSweep proves by example that interactive applications can reap all benefits of Reactive Programming even if they are concurrent or distributed. A comprehensive empirical evaluation measures through benchmarks, how FrameSweep’s performance and scalability are affected by a multitude of factors, e.g., thread contention, dataflow topology, dataflow topology changes, or distribution topology. It shows that FrameSweep’s performance compares favorably to alternative scheduling approaches with weaker guarantees in local applications. An existing Reactive Programming application is migrated to FrameSweep to empirically verify the claims of semantic and syntactic transparency

    Higher-Order, Data-Parallel Structured Deduction

    Full text link
    State-of-the-art Datalog engines include expressive features such as ADTs (structured heap values), stratified aggregation and negation, various primitive operations, and the opportunity for further extension using FFIs. Current parallelization approaches for state-of-art Datalogs target shared-memory locking data-structures using conventional multi-threading, or use the map-reduce model for distributed computing. Furthermore, current state-of-art approaches cannot scale to formal systems which pervasively manipulate structured data due to their lack of indexing for structured data stored in the heap. In this paper, we describe a new approach to data-parallel structured deduction that involves a key semantic extension of Datalog to permit first-class facts and higher-order relations via defunctionalization, an implementation approach that enables parallelism uniformly both across sets of disjoint facts and over individual facts with nested structure. We detail a core language, DLsDL_s, whose key invariant (subfact closure) ensures that each subfact is materialized as a top-class fact. We extend DLsDL_s to Slog, a fully-featured language whose forms facilitate leveraging subfact closure to rapidly implement expressive, high-performance formal systems. We demonstrate Slog by building a family of control-flow analyses from abstract machines, systematically, along with several implementations of classical type systems (such as STLC and LF). We performed experiments on EC2, Azure, and ALCF's Theta at up to 1000 threads, showing orders-of-magnitude scalability improvements versus competing state-of-art systems

    Compilation and Code Optimization for Data Analytics

    Get PDF
    The trade-offs between the use of modern high-level and low-level programming languages in constructing complex software artifacts are well known. High-level languages allow for greater programmer productivity: abstraction and genericity allow for the same functionality to be implemented with significantly less code compared to low-level languages. Modularity, object-orientation, functional programming, and powerful type systems allow programmers not only to create clean abstractions and protect them from leaking, but also to define code units that are reusable and easily composable, and software architectures that are adaptable and extensible. The abstraction, succinctness, and modularity of high-level code help to avoid software bugs and facilitate debugging and maintenance. The use of high-level languages comes at a performance cost: increased indirection due to abstraction, virtualization, and interpretation, and superfluous work, particularly in the form of tempory memory allocation and deallocation to support objects and encapsulation. As a result of this, the cost of high-level languages for performance-critical systems may seem prohibitive. The vision of abstraction without regret argues that it is possible to use high-level languages for building performance-critical systems that allow for both productivity and high performance, instead of trading off the former for the latter. In this thesis, we realize this vision for building different types of data analytics systems. Our means of achieving this is by employing compilation. The goal is to compile away expensive language features -- to compile high-level code down to efficient low-level code
    corecore