2,638 research outputs found

    A functional analysis of the defense response of Glycine max as it relates to parasitism by the plant parasitic nematode Heterodera glycines

    Get PDF
    The soybean cyst nematode (SCN), Heterodera glycines, a plant parasitic pest, causes severe yield losses of soybean (Glycine max). Although a number of studies have identified various genes that function in defense, including a role for the vesicular transport machinery acting against H. glycines in infected roots, a regulatory mechanism occurring behind the transcriptional engagement of the vesicular transport system and delivery of the transported cargo proteins is not fully understood. The main goal of the current study is to determine the functional effect of genetically engineering the circadian clock gene, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) in G. max to examine a role on H. glycines parasitism. The outcome of the study has determined the functional effect of main clock component CCA1-1 along with other oscillator genes such as TIMING OF CAB 1 (TOC1-1), GIGANTEA (GI-1) and CONSTANS (CO-4) to enhance resistance against H. glycines parasitism. Further, the reduced level of the expression of Gm-CCA1-1 in infected roots, in comparison to uninfected roots, has demonstrated that clock components might have arrested and altered its expression during the nematode infection process. The study has also investigated the role of XYLOGLUCAN ENDO-TRANSGLYCOSYLASE /HYDROLASE (XTH), Gm-XTH43, during the resistance process soybean has to H. glycines. The results have demonstrated higher xyloglucan (XyG) amounts to be synthesized in the Gm-XTH43 overexpressing (OE) lines. In contrast, there is less XyG in the Gm-XTH43 RNA interference (RNAi) lines that have a negatively regulated XTH gene. These observations have led to elucidating the role in the potential cell wall rearrangement and the underlying metabolic processes required for the generation of the proper XyG architecture required for defense occurring outside of the plant cell. Furthermore, the observed result of lower level of weight average molecular weight (WAMW) of XyG in Gm-XTH43-OE and higher MW of XyG in Gm-XTH43-RNAi than respective control roots have demonstrated a key role in, presumably, changing the cell wall by the remodeling of the XyG chain as it relates to the cell wall architecture

    Global analysis of serine/threonine and tyrosine protein phosphatase catalytic subunit genes in Neurospora crassa reveals interplay between phosphatases and the p38 mitogen-activated protein kinase.

    Get PDF
    Protein phosphatases are integral components of the cellular signaling machinery in eukaryotes, regulating diverse aspects of growth and development. The genome of the filamentous fungus and model organism Neurospora crassa encodes catalytic subunits for 30 protein phosphatase genes. In this study, we have characterized 24 viable N. crassa phosphatase catalytic subunit knockout mutants for phenotypes during growth, asexual development, and sexual development. We found that 91% of the mutants had defects in at least one of these traits, whereas 29% possessed phenotypes in all three. Chemical sensitivity screens were conducted to reveal additional phenotypes for the mutants. This resulted in the identification of at least one chemical sensitivity phenotype for 17 phosphatase knockout mutants, including novel chemical sensitivities for two phosphatase mutants lacking a growth or developmental phenotype. Hence, chemical sensitivity or growth/developmental phenotype was observed for all 24 viable mutants. We investigated p38 mitogen-activated protein kinase (MAPK) phosphorylation profiles in the phosphatase mutants and identified nine potential candidates for regulators of the p38 MAPK. We demonstrated that the PP2C class phosphatase pph-8 (NCU04600) is an important regulator of female sexual development in N. crassa. In addition, we showed that the Δcsp-6 (ΔNCU08380) mutant exhibits a phenotype similar to the previously identified conidial separation mutants, Δcsp-1 and Δcsp-2, that lack transcription factors important for regulation of conidiation and the circadian clock

    Hypoxia after stroke: a review of experimental and clinical evidence

    Get PDF
    Background Hypoxia is a common occurrence following stroke and associated with poor clinical and functional outcomes. Normal oxygen physiology is a finely controlled mechanism from the oxygenation of haemoglobin in the pulmonary capillaries to its dissociation and delivery in the tissues. In no organ is this process more important than the brain, which has a number of vascular adaptions to be able to cope with a certain threshold of hypoxia, beyond which further disruption of oxygen delivery potentially leads to devastating consequences. Hypoxia following stroke is common and is often attributed to pneumonia, aspiration and respiratory muscle dysfunction, with sleep apnoea syndromes, pulmonary embolism and cardiac failure being less common but important treatable causes. As well as treating the underlying cause, oxygen therapy is a vital element to correcting hypoxia, but excessive use can itself cause molecular and clinical harm. As cerebral vascular occlusion completely obliterates oxygen delivery to its target tissue, the use of supplemental oxygen, even when not hypoxic, would seem a reasonable solution to try and correct this deficit, but to date randomised clinical trials have not shown benefit. Conclusion Whilst evidence for the use of supplemental oxygen therapy is currently lacking, it is vital to rapidly identify and treat all causes of hypoxia in the acute stroke patient, as a failure to will lead to poorer clinical outcomes. The full results of a large randomised trial looking at the use of supplemental oxygen therapy are currently pending

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 185

    Get PDF
    This bibliography lists 462 reports, articles and other documents introduced into the NASA scientific and technical information system in February 1985. Aerodynamics, aeronautical engineering, aircraft design, aircraft stability and control, geophysics, social sciences, and space sciences are some of the areas covered

    Olive Oil and the Hallmarks of Aging

    Get PDF
    Aging is a multifactorial and tissue-specific process involving diverse alterations regarded as the “hallmarks of aging”, which include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intracellular communication. Virtually all these hallmarks are targeted by dietary olive oil, particularly by virgin olive oil, since many of its beneficial effects can be accounted not only for the monounsaturated nature of its predominant fatty acid (oleic acid), but also for the bioactivity of its minor compounds, which can act on cells though both direct and indirect mechanisms due to their ability to modulate gene expression. Among the minor constituents of virgin olive oil, secoiridoids stand out for their capacity to modulate many pathways that are relevant for the aging process. Attenuation of aging-related alterations by olive oil or its minor compounds has been observed in cellular, animal and human models. How olive oil targets the hallmarks of aging could explain the improvement of health, reduced risk of aging-associated diseases, and increased longevity which have been associated with consumption of a typical Mediterranean diet containing this edible oil as the predominant fat source

    Analogue CMOS Cochlea Systems: A Historic Retrospective

    Get PDF

    Aeronautical engineering: A continuing bibliography with indexes (supplement 306)

    Get PDF
    This bibliography lists 181 reports, articles, and other documents recently introduced into the NASA STI Database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    • 

    corecore