97,859 research outputs found

    Linking factual and procedural knowledge in solving science problems: A case study in a thermodynamics course

    Get PDF
    Well-specified problems of the type presented boxed in the introduction to this article are extremely common in science courses. Unfortunately, this does not mean that students find them easy to solve, even when a teacher provides model answers to problems which differ only marginally (in the teacher's eyes) from those put before the students. The central difficulty with such courses is that they do not embody instructional principles that reflect students' need for “direction” in problem solving. In this article, we describe how the necessary heuristics and strategic knowledge were built into the remake of a conventional thermodynamics course. In contrast to mainstream American work on learning problem solving we chose to direct our curriculum reconstruction using the Gal'perin theory of stage-by-stage formation of mental actions and Landa's description of the “through” systematization of knowledge. As indicated by both, we first developed an integrated system of instructional objectives: a programme of actions and methods (PAM) to solve problems in thermodynamics. Then the plan of instruction was designed. This plan indicates which instructional procedures and materials should be used to realize the instructional functions, derived from the learning theory. The evaluation design contained two control and three experimental courses. In discussing our main findings, we consider the generalizability of the procedures we followed in constructing the PAM and the instructional plan

    Introduction to TIPS: a theory for creative design

    Get PDF
    A highly intriguing problem in combining artificial intelligence and engineering design is automation of the creative and innovative phases of the design process. This paper gives a brief introduction to the theory of inventive problem solving (TIPS) selected as a theoretical basis of the authors' research efforts in this field. The research is conducted in the Stevin Project of the Knowledge-Based System Group of the University of Twente (Enschede, The Netherlands) in cooperation with the Invention Machine Laboratory (Minsk, Belarus). This collaboration aims at developing a formal basis for the creation of an automated reasoning system to support creative engineering design

    Application of TRIZ to develop an in-service diagnostic system for a synchronous belt transmission for automotive application

    Get PDF
    Development of robust diagnostic solutions to monitor the health of systems and components to ensure through life cost effectiveness is often technically difficult, requiring an effective integration of design development with research and innovation. This paper presents a structured application of TRIZ and USIT (Unified Structured Inventive Thinking) to generate concept solutions for an in-service diagnostic system for a synchronous belt drive system for an automotive application. The systematic exploration through TRIZ and USIT methods has led to the development of six concept solution ideas directed at the functional requirement to determine the state or condition of the belt. The paper demonstrates that the combined deployment of TRIZ and USIT frameworks is a valuable approach addressing difficult design problem

    The prevalent theory of construction is a hindrance for innovation

    Get PDF
    It is argued that construction innovation is significantly hindered by the prevalent theory of construction, which is implicit and deficient. There are three main mechanisms through which this hindrance is being caused. Firstly, because production theories in general, as well as construction theories specifically, have been implicit, it has not been possible to transfer such radical managerial innovation as mass production or lean production from manufacturing to construction. Direct application of these production templates in construction has been limited due to different context in construction in correspondence to manufacturing. On the other hand, without explicit theories, it has not been possible to access core ideas of concepts and methods of these templates, and to recreate them in construction environment. In consequence, theory and practice of construction has not progressed as in manufacturing. Secondly, it is argued that the underlying, even if implicit, theoretical model of construction is the transformation model of production. There are two first principles in the transformation model. First, the total transformation can be achieved only by realising all parts of it. Thus, we decompose the total transformation into parts, finally into tasks, ensure that all inputs are available and assign these tasks to operatives or workstations. Second, minimising the cost of each task, i.e. each decomposed transformation, minimises the cost of production. It is argued that these principles, in which uncertainty and time are abstracted away, are counterproductive, and lead to myopic control and inflated variability. Practical examples show that these deficiencies and related practical constraints hinder the top-down implementation of innovations. Thirdly, empirical research shows that also bottom-up innovation - systematic learning and problem solving - is hindered by this deficient theory. Thus, the advancement of construction innovation requires that a new, explicit and valid theory of construction is created, and business models and control methods based on it are developed
    • …
    corecore