486 research outputs found

    A Formal Metamodeling Approach to a Transformation between Visual and Formal Modeling Techniques

    Get PDF
    Formal modeling notations and visual modeling notations can complement each other when developing software models. The most frequently adopted approach is to define transformations between the visual and formal models. However, a significant problem with the currently suggested approaches is that the transformation itself is often described imprecisely, with the result that the overall transformation task may be imprecise, incomplete and inconsistent. This paper presents a formal metamodeling approach to transform between UML and Object-Z. In the paper, the two languages are defined in terms of their formal metamodels, and a systematic transformation between the models is provided at the meta-level in terms of formal mapping functions. As a consequence, we can provide a precise, consistent and complete transformation between a visual model in UML and a formal model in Object-Z

    UML-F: A Modeling Language for Object-Oriented Frameworks

    Full text link
    The paper presents the essential features of a new member of the UML language family that supports working with object-oriented frameworks. This UML extension, called UML-F, allows the explicit representation of framework variation points. The paper discusses some of the relevant aspects of UML-F, which is based on standard UML extension mechanisms. A case study shows how it can be used to assist framework development. A discussion of additional tools for automating framework implementation and instantiation rounds out the paper.Comment: 22 pages, 10 figure

    Formal foundations for the unified modeling language

    Get PDF
    We present in this work an outline of an ongoing research line in the framework of the Software Engineering Group (SEG) at the National University of San Luis. We describe here the previous work carried out by the group in formalizing UML using RSL, as well as the current and future work in the matter.Eje: Ingeniería de SoftwareRed de Universidades con Carreras en Informática (RedUNCI

    Model-Based Systems Engineering Approach to Distributed and Hybrid Simulation Systems

    Get PDF
    INCOSE defines Model-Based Systems Engineering (MBSE) as the formalized application of modeling to support system requirements, design, analysis, verification, and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases. One very important development is the utilization of MBSE to develop distributed and hybrid (discrete-continuous) simulation modeling systems. MBSE can help to describe the systems to be modeled and help make the right decisions and partitions to tame complexity. The ability to embrace conceptual modeling and interoperability techniques during systems specification and design presents a great advantage in distributed and hybrid simulation systems development efforts. Our research is aimed at the definition of a methodological framework that uses MBSE languages, methods and tools for the development of these simulation systems. A model-based composition approach is defined at the initial steps to identify distributed systems interoperability requirements and hybrid simulation systems characteristics. Guidelines are developed to adopt simulation interoperability standards and conceptual modeling techniques using MBSE methods and tools. Domain specific system complexity and behavior can be captured with model-based approaches during the system architecture and functional design requirements definition. MBSE can allow simulation engineers to formally model different aspects of a problem ranging from architectures to corresponding behavioral analysis, to functional decompositions and user requirements (Jobe, 2008)

    Formal Transformations from Graphically-Based Object-Oriented Representations to Theory-Based Specifications

    Get PDF
    Formal software specification has long been touted as a way to increase the quality and reliability of software; however, it remains an intricate, manually intensive activity. An alternative to using formal specifications is to use graphically-based, semi-formal specifications such as those used in many object-oriented specification methodologies. While semi-formal specifications are generally easier to develop and understand, they lack the rigor and precision of formal specification techniques. The basic premise of this investigation is that formal software specifications can be constructed using correctness preserving transformations from graphically-based object-oriented representations. In this investigation, object-oriented specifications defined using Rumbaugh\u27s Object Modeling Technique (OMT) were translated into algebraic specifications. To ensure the correct translation of graphically-based OMT specifications into their algebraic counterparts, a formal semantics for interpreting OMT specifications was derived and an algebraic model of object-orientation was developed. This model defines how object-oriented concepts are represented algebraically using an object-oriented algebraic specification language O-SLANG. O-SLANG combines basic algebraic specification constructs with category theory operations to capture internal object class structure as well as relationships between classes. Next, formal transformations from OMT specifications to O-SLANG specifications were defined and the feasibility of automating these transformations was demonstrated by the development of a proof-of-concept system

    An Approach to Building Object Models with UML in Embedded Systems

    Get PDF
    The UML-based development methods of embedded systems are use case-driven. In these methods, identifying objects that constitute the software system is critical and a hard task, since there is no crisp guidelines. In this article, we propose a systematic approach to building object models in embedded systems. After hierarchically decomposing the system into its parts, the approach consists of firstly converting the use case into a statechart that models states of the concerned system parts and secondly, identifying the objects from the statechart. The proposed approach bridges the gap between the outside behavioral system description as offered by use cases and the system structure represented by the object model

    Independent verification of specification models for large software systems at the early phases of development lifecycle

    Get PDF
    One of the major challenges facing the software industry, in general and IV&V (Independent Verification and Validation) analysts in particular, is to find ways for analyzing dynamic behavior of requirement specifications of large software systems early in the development lifecycle. Such analysis can significantly improve the performance and reliability of the developed systems. This dissertation addresses the problem of developing an IV&V framework for extracting semantics of dynamic behavior from requirement specifications based on: (1) SART (Structured Analysis with Realtime) models, and (2) UML (Unified Modeling Language) models.;For SART, the framework presented here shows a direct mapping from SART specification models to CPN (Colored Petrinets) models. The semantics of the SART hierarchy at the individual levels are preserved in the mapping. This makes it easy for the analyst to perform the analysis and trace back to the corresponding SART model. CPN was selected because it supports rigorous dynamic analysis. A large scale case study based on a component of NASA EOS system was performed for a proof of the concept.;For UML specifications, an approach based on metamodels is presented. A special type of metamodel, called dynamic metamodel (DMM), is introduced. This approach holds several advantages over the direct mapping of UML to CPN. The mapping rules for generating DMM are not CPN specific, hence they would not change if a language other than CPN is used. Also it makes it more flexible to develop DMM because other types of models can be added to the existing UML models. A simple example of a pacemaker is used to illustrate the concepts of DMM
    corecore