214 research outputs found

    Virtual Platform-Based Design Space Exploration of Power-Efficient Distributed Embedded Applications

    Get PDF
    Networked embedded systems are essential building blocks of a broad variety of distributed applications ranging from agriculture to industrial automation to healthcare and more. These often require specific energy optimizations to increase the battery lifetime or to operate using energy harvested from the environment. Since a dominant portion of power consumption is determined and managed by software, the software development process must have access to the sophisticated power management mechanisms provided by state-of-the-art hardware platforms to achieve the best tradeoff between system availability and reactivity. Furthermore, internode communications must be considered to properly assess the energy consumption. This article describes a design flow based on a SystemC virtual platform including both accurate power models of the hardware components and a fast abstract model of the wireless network. The platform allows both model-driven design of the application and the exploration of power and network management alternatives. These can be evaluated in different network scenarios, allowing one to exploit power optimization strategies without requiring expensive field trials. The effectiveness of the approach is demonstrated via experiments on a wireless body area network application

    A Holistic Approach to Functional Safety for Networked Cyber-Physical Systems

    Get PDF
    Functional safety is a significant concern in today's networked cyber-physical systems such as connected machines, autonomous vehicles, and intelligent environments. Simulation is a well-known methodology for the assessment of functional safety. Simulation models of networked cyber-physical systems are very heterogeneous relying on digital hardware, analog hardware, and network domains. Current functional safety assessment is mainly focused on digital hardware failures while minor attention is devoted to analog hardware and not at all to the interconnecting network. In this work we believe that in networked cyber-physical systems, the dependability must be verified not only for the nodes in isolation but also by taking into account their interaction through the communication channel. For this reason, this work proposes a holistic methodology for simulation-based safety assessment in which safety mechanisms are tested in a simulation environment reproducing the high-level behavior of digital hardware, analog hardware, and network communication. The methodology relies on three main automatic processes: 1) abstraction of analog models to transform them into system-level descriptions, 2) synthesis of network infrastructures to combine multiple cyber-physical systems, and 3) multi-domain fault injection in digital, analog, and network. Ultimately, the flow produces a homogeneous optimized description written in C++ for fast and reliable simulation which can have many applications. The focus of this thesis is performing extensive fault simulation and evaluating different functional safety metrics, \eg, fault and diagnostic coverage of all the safety mechanisms

    Addressing the Smart Systems Design Challenge: The SMAC Platform

    Get PDF
    This article presents the concepts, the organization, and the preliminary application results of SMAC, a smart systems co-design platform. The SMAC platform, which has been developed as Integrated Project (IP) of the 7th ICT Call under the Objective 3.2 \u201cSmart components and Smart Systems integration\u201d addresses the challenges of the integration of heterogeneous and conflicting domains that emerge in the design of smart systems. SMAC includes methodologies and EDA tools enabling multi-disciplinary and multi-scale modelling and design, simulation of multidomain systems, subsystems and components at different levels of abstraction, system integration and exploration for optimization of functional and non-functional metrics. The article presents the preliminary results obtained by adopting the SMAC platform for the design of a limb tracking smart system

    Wireless sensor networks for active vibration control in automobile structures

    Get PDF
    International audienceWireless Sensor Network (WSN) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using Wireless Sensor Networks in active vibration control strategy. The active control method used is an active-structural acoustic control using piezoelectric sensors distributed on the car structure. This system aims at being merged in wireless sensor network whose head node collects data and process control law so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSN in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best Wireless Sensor Network platform and the resulting impact on control

    A METHODOLOGY FOR DESIGN SPACE EXPLORATION OF REAL-TIME LOCATION SYSTEMS

    Get PDF
    Scope of Research. This paper deals with the problem of design space exploration for a particular class of networked embedded systems called Real-Time Location Systems (RTLS). Methods. The paper contains a clear and detailed plan of anongoing research and could be considered as a review, a vision and a statement of objectives. Analytical and formal methods, simulation and automated verification will be involved in the research. Main Results. Analysis of the state of the art (current design flow, existing simulation tools and verification techniques) has revealed several limitations for performing efficientdesign space exploration of RTLS, especially for safety-critical applications. The review part of the paper also contains a clear problem statement. The main outcome of this research is the proposed vision of a novel methodology for determining the best-suited technology and its configuration from the space of potential solutions. In particular, it is planned to extend an existing simulation framework and apply automated verification techniques. The latter will be used for checking simulation results and also for exploring different system configuration alternatives, that is, to optimize the design, which is a novel approach. A case study for validating the methodology is also proposed. Practical Significance. The proposed methodology will highly increase the breadth of design space exploration of RTLS as well as the confidence on taken design decisions. It will also contribute to optimizing the design

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels. This article presents an overview of the CONTREX European project, its main innovative technology (extension of a model based design approach, functional and extra-functional analysis with executable models and run-time management) and the final results of three industrial use-cases from different domain (avionics, automotive and telecommunication).The work leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2011 under grant agreement no. 611146

    A Networked Dataflow Simulation Environment for Signal Processing and Data Mining Applications

    Get PDF
    In networked signal processing systems, dataflow graphs can be used to describe the processing on individual network nodes. However, to analyze the correctness and performance of these systems, designers must understand the interactions across these individual "node-level'' dataflow graphs --- as they communicate across the network --- in addition to the characteristics of the individual graphs. In this thesis, we present a novel simulation environment, called the NS-2 -- TDIF SIMulation environment (NT-SIM). NT-SIM provides integrated co-simulation of networked systems and combines the network analysis capabilities provided by the Network Simulator (ns) with the scheduling capabilities of a dataflow-based framework, thereby providing novel features for more comprehensive simulation of networked signal processing systems. Through a novel integration of advanced tools for network and dataflow graph simulation, our NT-SIM environment allows comprehensive simulation and analysis of networked systems. We present two case studies that concretely demonstrate the utility of NT-SIM in the contexts of a heterogeneous signal processing and data mining system design

    Multi-core architectures with coarse-grained dynamically reconfigurable processors for broadband wireless access technologies

    Get PDF
    Broadband Wireless Access technologies have significant market potential, especially the WiMAX protocol which can deliver data rates of tens of Mbps. Strong demand for high performance WiMAX solutions is forcing designers to seek help from multi-core processors that offer competitive advantages in terms of all performance metrics, such as speed, power and area. Through the provision of a degree of flexibility similar to that of a DSP and performance and power consumption advantages approaching that of an ASIC, coarse-grained dynamically reconfigurable processors are proving to be strong candidates for processing cores used in future high performance multi-core processor systems. This thesis investigates multi-core architectures with a newly emerging dynamically reconfigurable processor – RICA, targeting WiMAX physical layer applications. A novel master-slave multi-core architecture is proposed, using RICA processing cores. A SystemC based simulator, called MRPSIM, is devised to model this multi-core architecture. This simulator provides fast simulation speed and timing accuracy, offers flexible architectural options to configure the multi-core architecture, and enables the analysis and investigation of multi-core architectures. Meanwhile a profiling-driven mapping methodology is developed to partition the WiMAX application into multiple tasks as well as schedule and map these tasks onto the multi-core architecture, aiming to reduce the overall system execution time. Both the MRPSIM simulator and the mapping methodology are seamlessly integrated with the existing RICA tool flow. Based on the proposed master-slave multi-core architecture, a series of diverse homogeneous and heterogeneous multi-core solutions are designed for different fixed WiMAX physical layer profiles. Implemented in ANSI C and executed on the MRPSIM simulator, these multi-core solutions contain different numbers of cores, combine various memory architectures and task partitioning schemes, and deliver high throughputs at relatively low area costs. Meanwhile a design space exploration methodology is developed to search the design space for multi-core systems to find suitable solutions under certain system constraints. Finally, laying a foundation for future multithreading exploration on the proposed multi-core architecture, this thesis investigates the porting of a real-time operating system – Micro C/OS-II to a single RICA processor. A multitasking version of WiMAX is implemented on a single RICA processor with the operating system support
    • …
    corecore