338 research outputs found

    Network-aware design-space exploration of a power-efficient embedded application

    Get PDF
    The paper presents the design and multi-parameter optimization of a networked embedded application for the health-care domain. Several hardware, software, and application parameters, such as clock frequency, sensor sampling rate, data packet rate, are tuned at design- and run-time according to application specifications and operating conditions to optimize hardware requirements, packet loss, power consumption. Experimental results show that further power efficiency can be achieved by considering also communication aspects during design space exploratio

    IP-XACT for Smart Systems Design: Extensions for the Integration of Functional and Extra-Functional Models

    Get PDF
    Smart systems are miniaturized devices integrating computation, communication, sensing and actuation. As such, their design can not focus solely on functional behavior, but it must rather take into account different extra-functional concerns, such as power consumption or reliability. Any smart system can thus be modeled through a number of views, each focusing on a specific concern. Such views may exchange information, and they must thus be simulated simultaneously to reproduce mutual influence of the corresponding concerns. This paper shows how the IP-XACT standard, with some necessary extensions, can effectively support this simultaneous simulation. The extended IP-XACT descriptions allow to model extra-functional properties with a homogeneous format, defined by analysing requirements and characteristic of three main concerns, i.e., power, temperature and reliability. The IP-XACT descriptions are then used to automatically generate a skeleton of the simulation infrastructure in SystemC. The skeleton can be easily populated with models available in the literature, thus reaching simultaneous simulation of multiple concerns

    Design Framework for Heterogeneous Hardware and Software in Wireless Sensor Networks

    Get PDF
    International audienceWireless Sensor Networks are composed of many autonomous resource-constrained sensor nodes. Constrains are low energy, memory and processing speed. Nowadays, several limitations exist for heterogeneous Wireless Sensor Networks: various hardware and software are hardly supported at design and simulation levels. Meanwhile, to optimize a self-organized network, it is essential to be able to update it with new nodes, to ensure interoperability, and to be able to exchange not only data but functionalities between nodes. Moreover, it is difficult to make design space exploration, as accurate hardware-level models and network-level simulations have very different (opposite) levels. We propose a simulator-based on SystemC language-that allows such design space explorations. It is composed of a library of hardware and software blocks. More and more sophisticated software support is implemented in our simulator. As trend is to deploy heterogeneous nodes, various software levels have to be considered. Our simulator is also thought to support many levels: from machine code to high level languages

    Heterogeneous Wireless Sensor Network Simulation

    Get PDF
    International audienceBased on our previous work on the development of a Wireless Sensor Network (WSN) simulation platform, we present here its ability to run simulations on heterogeneous nodes. This platform allows system-level simulations with low level accurate models, with graphical inputs and outputs to easily simulate such distributed systems. In the testbed we consider, the well known IEEE 802.15.4 standard is used, and different microcontrollers units (MCU) and radiofrequency transceivers compose the heterogeneous nodes. It is also possible to simulate complex networks or interacting networks; that is a more realistic case, as more and more hardware devices exist and standards permit their interoperability. This simulation platform can be used to explore design space in order to find the hardware devices and IEEE 802.15.4 algorithm that best fit a given application. Packet Delivery Rate (PDR) and packet latency can be evaluated, as other network simulators do. Energy consumption of sensor nodes is detailed with a very fine granularity: partitioning over and into hardware devices that compose the node is studied

    Virtual Platform-Based Design Space Exploration of Power-Efficient Distributed Embedded Applications

    Get PDF
    Networked embedded systems are essential building blocks of a broad variety of distributed applications ranging from agriculture to industrial automation to healthcare and more. These often require specific energy optimizations to increase the battery lifetime or to operate using energy harvested from the environment. Since a dominant portion of power consumption is determined and managed by software, the software development process must have access to the sophisticated power management mechanisms provided by state-of-the-art hardware platforms to achieve the best tradeoff between system availability and reactivity. Furthermore, internode communications must be considered to properly assess the energy consumption. This article describes a design flow based on a SystemC virtual platform including both accurate power models of the hardware components and a fast abstract model of the wireless network. The platform allows both model-driven design of the application and the exploration of power and network management alternatives. These can be evaluated in different network scenarios, allowing one to exploit power optimization strategies without requiring expensive field trials. The effectiveness of the approach is demonstrated via experiments on a wireless body area network application
    • …
    corecore