14,455 research outputs found

    Identifying and improving reusability based on coupling patterns

    Get PDF
    Open Source Software (OSS) communities have not yet taken full advantage of reuse mechanisms. Typically many OSS projects which share the same application domain and topic, duplicate effort and code, without fully leveraging the vast amounts of available code. This study proposes the empirical evaluation of source code folders of OSS projects in order to determine their actual internal reuse and their potential as shareable, fine-grained and externally reusable software components by future projects. This paper empirically analyzes four OSS systems, identifies which components (in the form of folders) are currently being reused internally and studies their coupling characteristics. Stable components (i.e., those which act as service providers rather than service consumers) are shown to be more likely to be reusable. As a means of supporting replication of these successful instances of OSS reuse, source folders with similar patterns are extracted from the studied systems, and identified as externally reusable components

    From types to type requirements: Genericity for model-driven engineering

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-011-0221-0Model-driven engineering (MDE) is a software engineering paradigm that proposes an active use of models during the development process. This paradigm is inherently type-centric, in the sense that models and their manipulation are defined over the types of specific meta-models. This fact hinders the reuse of existing MDE artefacts with other meta-models in new contexts, even if all these meta-models share common characteristics. To increase the reuse opportunities of MDE artefacts, we propose a paradigm shift from type-centric to requirement-centric specifications by bringing genericity into models, meta-models and model management operations. For this purpose, we introduce so-called concepts gathering structural and behavioural requirements for models and meta-models. In this way, model management operations are defined over concepts, enabling the application of the operations to any meta-model satisfying the requirements imposed by the concept. Model templates rely on concepts to define suitable interfaces, hence enabling the definition of reusable model components. Finally, similar to mixin layers, templates can be defined at the meta-model level as well, to define languages in a modular way, as well as layers of functionality to be plugged-in into other meta-models. These ideas have been implemented in MetaDepth, a multi-level meta-modelling tool that integrates action languages from the Epsilon family for model management and code generation.This work has been sponsored by the Spanish Ministry of Science and Innovation with projects METEORIC (TIN2008-02081) and Go Lite (TIN2011-24139), and by the R&D program of the Community of Madrid with project “e-Madrid” (S2009/TIC-1650)

    Creating Reusable Educational Components: Lessons from DLESE

    Get PDF
    Reuse of educational materials is integral to many educator tasks, from designing a course to preparing for a lab or class. This article describes a study on the reuse of educational materials in the context of the Digital Library for Earth System Education (DLESE), a community-owned and governed facility offering high-quality teaching and learning resources for Earth system education. The study noted that educational resource designers often do not develop components with reuse in mind, making it more difficult or impossible for other educators to find and use their material, and that the 'findability' and reusability of community-created digital educational resources is highly dependent on the presentational and structural design of the resources themselves. The authors recommend that all resources clearly state the creator's name and contact information, relevant copyright restrictions, the most significant date for the resource (specifying creation or revision), and the intended grade level. Educational levels: Graduate or professional, Graduate or professional, Graduate or professional

    Adaptive reuse of Libre software systems for supporting on-line collaboration

    Get PDF
    In this paper, the adaptive reuse of Plone; an open source content management system is described. In one instance, Plone has been used as the backbone of a collaboration and communication support infrastructure within a large research project. In the other, Plone has been used as the main web-presence of a specialist group of the British Computer Society. This paper analyses the benefits and problems of reusing Plone to support collaboration. Based on this reuse experience, a more systematic approach to supporting Plone reuse is proposed. This approach takes into account the special case of reuse support relevant to open source software developments

    Real world evaluation of aspect-oriented software development : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Software development has improved over the past decade with the rise in the popularity of the Object-Oriented (OO) development approach. However, software projects continue to grow in complexity and continue to have alarmingly low rates of success. Aspect-Oriented Programming (AOP) is touted to be one solution to this software development problem. It shows promise of reducing programming complexity, making software more flexible and more amenable to change. The central concept introduced by AOP is the aspect. An aspect is used to modularise crosscutting concerns in a similar fashion to the way classes modularise business concerns. A crosscutting concern cannot be modularised in approaches such as OO because the code to realise the concern must be spread throughout the module (e.g. a tracing concent is implemented by adding code to every method in a system). AOP also introduces join points, pointcuts, and advice which are used with aspects to capture crosscutting concerns so they can be localised in a modular unit. OO took approximately 20 years to become a mainstream development approach. AOP was only invented in 1997. This project considers whether AOP is ready for commercial adoption. This requires analysis of the AOP implementations available, tool support, design processes, testing tools, standards, and support infrastructure. Only when AOP is evaluated across all these criteria can it be established whether it is ready to be used in commercial projects. Moreover, if companies are to invest time and money into adopting AOP, they must be aware of the benefits and risks associated with its adoption. This project attempts to quantify the potential benefits in adopting AOP, as well as identifying areas of risk. SolNet Solutions Ltd, an Information Technology (IT) company in Wellington, New Zealand, is used in this study as a target environment for integration of aspects into a commercial development process. SolNet is in the business of delivering large scale enterprise Java applications. To assist in this process they have developed a Common Services Architecture (CSA) containing components that can be reused to reduce risk and cost to clients. However, the CSA is complicated and SolNet have identified aspects as a potential solution to decrease the complexity. Aspects were found to bring substantial improvement to the Service Layer of SolNet. applications, including substantial reductions in complexity and size. This reduces the cost and time of development, as well as the risk associated with the projects. Moreover, the CSA was used in a more consistent fashion making the system easier to understand and maintain, and several crosscutting concerns were modularised as part of a reusable aspect library which could eventually form part of their CSA. It was found that AOP is approaching commercial readiness. However, more work is needed on defining standards for aspect languages and modelling of design elements. The current solutions in this area are commercially viable, but would greatly benefit from a standardised approach. Aspect systems can be difficult to test and the effect of the weaving process on Java serialisation requires further investigation
    corecore