3,037 research outputs found

    Sounds of silence: How to animate virtual worlds with sound

    Get PDF
    Sounds are an integral and sometimes annoying part of our daily life. Virtual worlds which imitate natural environments gain a lot of authenticity from fast, high quality visualization combined with sound effects. Sounds help to increase the degree of immersion for human dwellers in imaginary worlds significantly. The virtual reality toolkit of IGD (Institute for Computer Graphics) features a broad range of standard visual and advanced real-time audio components which interpret an object-oriented definition of the scene. The virtual reality system 'Virtual Design' realized with the toolkit enables the designer of virtual worlds to create a true audiovisual environment. Several examples on video demonstrate the usage of the audio features in Virtual Design

    Virtual acoustics displays

    Get PDF
    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events

    Proceedings, MSVSCC 2018

    Get PDF
    Proceedings of the 12th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 19, 2018 at VMASC in Suffolk, Virginia. 155 pp

    Developing a virtual reality environment for petrous bone surgery: a state-of-the-art review

    Get PDF
    The increasing power of computers has led to the development of sophisticated systems that aim to immerse the user in a virtual environment. The benefits of this type of approach to the training of physicians and surgeons are immediately apparent. Unfortunately the implementation of “virtual reality” (VR) surgical simulators has been restricted by both cost and technical limitations. The few successful systems use standardized scenarios, often derived from typical clinical data, to allow the rehearsal of procedures. In reality we would choose a system that allows us not only to practice typical cases but also to enter our own patient data and use it to define the virtual environment. In effect we want to re-write the scenario every time we use the environment and to ensure that its behavior exactly duplicates the behavior of the real tissue. If this can be achieved then VR systems can be used not only to train surgeons but also to rehearse individual procedures where variations in anatomy or pathology present specific surgical problems. The European Union has recently funded a multinational 3-year project (IERAPSI, Integrated Environment for Rehearsal and Planning of Surgical Interventions) to produce a virtual reality system for surgical training and for rehearsing individual procedures. Building the IERAPSI system will bring together a wide range of experts and combine the latest technologies to produce a true, patient specific virtual reality surgical simulator for petrous/temporal bone procedures. This article presents a review of the “state of the art” technologies currently available to construct a system of this type and an overview of the functionality and specifications such a system requires

    Three-dimensional echocardiographic virtual endoscopy for the diagnosis of congenital heart disease in children

    Get PDF
    Virtual endoscopy (VE) is a new post-processing method that uses volumetric data sets to simulate the tracks of a “conventional” flexible endoscope. However, almost all studies of this method have involved virtual visualizations of the cardiovascular structures applied to computed tomography (CT) and magnetic resonance (MR) datasets. This paper introduces a novel visualization method called the “three-dimensional echocardiographic intracardiac endoscopic simulation system (3DE IESS)”, which uses 3D echocardiographic images in a virtual reality (VR) environment to diagnose congenital heart disease. The aim of this study was to analyze the feasibility of VE in the evaluation of congenital heart disease in children and its accuracy compared with 2DE. Three experienced pediatric cardiologists blinded to the patients’ diagnoses separately reviewed 40 two-dimensional echocardiographic (2DE) datasets and 40 corresponding VE datasets and judged whether abnormal intracardiac anatomy was present in terms of a five-point scale (1 = definitely absent; 2 = probably absent; 3 = cannot be determined; 4 = probably present; and 5 = definitely present). Compared with clinical diagnosis, the diagnostic accuracy of VE was 98.7% for ASD, 92.4% for VSD, 92.6% for TOF, and 94% for DORV, respectively. Diagnostic accuracy of VE was significantly higher than that of 2DE for TOF and DORV except for ASD and VSD. The receiver operating characteristic (ROC) curve for VE was closer to the optimal performance point than was the ROC curve for 2DE. The area under the ROC curve was 0.96 for VE and 0.93 for 2DE. Kappa values (range, 0.73–0.79) for VE and 2DE indicated substantial agreement. 3D echocardiographic VE can enhance our understanding of intracardiac structures and facilitate the evaluation of congenital heart disease

    Using Virtual Reality Technology in Oil and Gas Industry

    Get PDF
    This article introduces the research of virtual reality technologies used in the oil and gas industry. The industry is so vast that the technologies used there are radically different. Various aspects of oil and gas production were considered, such as geodata modeling, real-time production visualization technology. The problems and possible solutions for translating CAD models into virtual reality applications are indicated. Also, using virtual reality technology, can increase the speed of work and reduce the risk of errors, which is extremely important in the oil and gas industry. As well as the benefits of learning and using virtual reality to improve learning and understanding of production processes

    Human Machine Interfaces for Teleoperators and Virtual Environments

    Get PDF
    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models

    The Second ICASE/LaRC Industry Roundtable: Session Proceedings

    Get PDF
    The second ICASE/LaRC Industry Roundtable was held October 7-9, 1996 at the Williamsburg Hospitality House, Williamsburg, Virginia. Like the first roundtable in 1994, this meeting had two objectives: (1) to expose ICASE and LaRC scientists to industrial research agendas; and (2) to acquaint industry with the capabilities and technology available at ICASE, LaRC and academic partners of ICASE. Nineteen sessions were held in three parallel tracks. Of the 170 participants, over one third were affiliated with various industries. Proceedings from the different sessions are summarized in this report

    Proceedings of the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology, Volume 1

    Get PDF
    These proceedings are organized in the same manner as the conference's contributed sessions, with the papers grouped by topic area. These areas are as follows: VE (virtual environment) training for Space Flight, Virtual Environment Hardware, Knowledge Aquisition for ICAT (Intelligent Computer-Aided Training) & VE, Multimedia in ICAT Systems, VE in Training & Education (1 & 2), Virtual Environment Software (1 & 2), Models in ICAT systems, ICAT Commercial Applications, ICAT Architectures & Authoring Systems, ICAT Education & Medical Applications, Assessing VE for Training, VE & Human Systems (1 & 2), ICAT Theory & Natural Language, ICAT Applications in the Military, VE Applications in Engineering, Knowledge Acquisition for ICAT, and ICAT Applications in Aerospace
    corecore