1,782 research outputs found

    Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST)

    Get PDF
    BACKGROUND: BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST), which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. RESULTS: W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN). W.ND-BLAST provides intuitive Graphic User Interfaces (GUI) for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours) on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV) and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. CONCLUSION: W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is freely downloadable from . With registration the software is free, installation, networking, and usage instructions are provided as well as a support forum

    Dynamic server selection in a multithreaded network computing environment

    Get PDF
    Research has been conducted at the Iowa State University Center for Nondestructive Evaluation (CNDE) to create a structure in which existing numerical modeling programs can be converted to execute in a network computing environment. This research task is to include the development of an extensible architecture which accommodates the timely integration of new processing capabilities and requirements. The research was motivated by many needs within the CNDE to reduce the predicted run times associated with the current and future modeling programs

    Scientific Computing Meets Big Data Technology: An Astronomy Use Case

    Full text link
    Scientific analyses commonly compose multiple single-process programs into a dataflow. An end-to-end dataflow of single-process programs is known as a many-task application. Typically, tools from the HPC software stack are used to parallelize these analyses. In this work, we investigate an alternate approach that uses Apache Spark -- a modern big data platform -- to parallelize many-task applications. We present Kira, a flexible and distributed astronomy image processing toolkit using Apache Spark. We then use the Kira toolkit to implement a Source Extractor application for astronomy images, called Kira SE. With Kira SE as the use case, we study the programming flexibility, dataflow richness, scheduling capacity and performance of Apache Spark running on the EC2 cloud. By exploiting data locality, Kira SE achieves a 2.5x speedup over an equivalent C program when analyzing a 1TB dataset using 512 cores on the Amazon EC2 cloud. Furthermore, we show that by leveraging software originally designed for big data infrastructure, Kira SE achieves competitive performance to the C implementation running on the NERSC Edison supercomputer. Our experience with Kira indicates that emerging Big Data platforms such as Apache Spark are a performant alternative for many-task scientific applications

    Development of Cluster Computing –A Review

    Get PDF
    This paper presents the review work of “Cluster Computing” in depth and detail.  Cluster Computing: A Mobile Code Approach by R.B.Patel and Manpreet Singh (2006); Performance Evaluation of Parallel Applications Using Message Passing Interface In Network of Workstations Of Different Computing Powers by Rajkumar Sharma, Priyesh Kanungo and Manohar Chandwani (2011); On the Performance of MPI-OpenMP on a 12 nodes Multi-core Cluster by Abdelgadir Tageldin, Al-Sakib Khan Pathan , Mohiuddin Ahmed (2011); Dynamic Load Balancing in Parallel Processing on Non-Homogeneous Clusters by Armando E. De Giusti, Marcelo R. Naiouf, Laura C. De Giusti, Franco Chichizola (2005); Performance Evaluation of Computation Intensive Tasks in Grid by P.Raghu, K. Sriram (2011); Automatic Distribution of Vision-Tasks on Computing Clusters by Thomas Muller, Binh An Tran and Alois Knoll (2011); Terminology And Taxonomy Parallel Computing Architecture by Amardeep Singh, Satinder Pal Singh, Vandana, Sukhnandan Kaur (2011); Research of Distributed Algorithm based on Parallel Computer Cluster System by Xu He-li, Liu Yan (2010); Cluster Computing Using Orders Based Transparent Parallelizing by Vitaliy D. Pavlenko, Victor V. Burdejnyj (2007) and VCE: A New Personated Virtual Cluster Engine for Cluster Computing by Mohsen Sharifi, Masoud Hassani, Ehsan Mousavi Khaneghah, Seyedeh Leili Mirtaheri (2008). Keywords:Cluster computing, Cluster Architectures, Dynamic and Static Load Balancing, Distributed Systems, Homogeneous and Non-Homogeneous Processors, Multicore clusters, Parallel computing, Parallel Computer Vision, Task parallelism, Terminology and taxonomy, Virtualization, Virtual Cluster

    Fault Tolerant Adaptive Parallel and Distributed Simulation through Functional Replication

    Full text link
    This paper presents FT-GAIA, a software-based fault-tolerant parallel and distributed simulation middleware. FT-GAIA has being designed to reliably handle Parallel And Distributed Simulation (PADS) models, which are needed to properly simulate and analyze complex systems arising in any kind of scientific or engineering field. PADS takes advantage of multiple execution units run in multicore processors, cluster of workstations or HPC systems. However, large computing systems, such as HPC systems that include hundreds of thousands of computing nodes, have to handle frequent failures of some components. To cope with this issue, FT-GAIA transparently replicates simulation entities and distributes them on multiple execution nodes. This allows the simulation to tolerate crash-failures of computing nodes. Moreover, FT-GAIA offers some protection against Byzantine failures, since interaction messages among the simulated entities are replicated as well, so that the receiving entity can identify and discard corrupted messages. Results from an analytical model and from an experimental evaluation show that FT-GAIA provides a high degree of fault tolerance, at the cost of a moderate increase in the computational load of the execution units.Comment: arXiv admin note: substantial text overlap with arXiv:1606.0731

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    SPEDE: Simple Programming Environment for Distributed Execution

    Get PDF
    One of the main goals for people who use computer systems, particularly computational scientists, is speed. In the quest for ways to make applications run faster, engineers have developed parallel computers, which use more than one CPU to solve a task. However, many institutions already posses significant computational power in networks of workstations. Through software, it is possible to glue together clusters of machines to simulate a parallel environment. SPEDE is one such system, designed to place the potential of local machines at the fingertips of the programmer. Through a simple interface, users design computational objects that can be linked and run in parallel. The goal of the project is to have a small portable environment that allows various types of computer systems to interact. SPEDE requires no altering of the kernel and does not require system privileges to use. Using SPEDE, programmers can get significant speedup for computationally intensive problems. As an example, a Mandelbrot image generator was implemented, that attained a five-fold speedup with eight processors
    • …
    corecore