99 research outputs found

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Widening Viewing Angles of Automultiscopic Displays using Refractive Inserts

    Get PDF

    Three-dimensional media for mobile devices

    Get PDF
    Cataloged from PDF version of article.This paper aims at providing an overview of the core technologies enabling the delivery of 3-D Media to next-generation mobile devices. To succeed in the design of the corresponding system, a profound knowledge about the human visual system and the visual cues that form the perception of depth, combined with understanding of the user requirements for designing user experience for mobile 3-D media, are required. These aspects are addressed first and related with the critical parts of the generic system within a novel user-centered research framework. Next-generation mobile devices are characterized through their portable 3-D displays, as those are considered critical for enabling a genuine 3-D experience on mobiles. Quality of 3-D content is emphasized as the most important factor for the adoption of the new technology. Quality is characterized through the most typical, 3-D-specific visual artifacts on portable 3-D displays and through subjective tests addressing the acceptance and satisfaction of different 3-D video representation, coding, and transmission methods. An emphasis is put on 3-D video broadcast over digital video broadcasting-handheld (DVB-H) in order to illustrate the importance of the joint source-channel optimization of 3-D video for its efficient compression and robust transmission over error-prone channels. The comparative results obtained identify the best coding and transmission approaches and enlighten the interaction between video quality and depth perception along with the influence of the context of media use. Finally, the paper speculates on the role and place of 3-D multimedia mobile devices in the future internet continuum involving the users in cocreation and refining of rich 3-D media content

    Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization

    Get PDF
    We optimize automultiscopic displays built by stacking a pair of modified LCD panels. To date, such dual-stacked LCDs have used heuristic parallax barriers for view-dependent imagery: the front LCD shows a fixed array of slits or pinholes, independent of the multi-view content. While prior works adapt the spacing between slits or pinholes, depending on viewer position, we show both layers can also be adapted to the multi-view content, increasing brightness and refresh rate. Unlike conventional barriers, both masks are allowed to exhibit non-binary opacities. It is shown that any 4D light field emitted by a dual-stacked LCD is the tensor product of two 2D masks. Thus, any pair of 1D masks only achieves a rank-1 approximation of a 2D light field. Temporal multiplexing of masks is shown to achieve higher-rank approximations. Non-negative matrix factorization (NMF) minimizes the weighted Euclidean distance between a target light field and that emitted by the display. Simulations and experiments characterize the resulting content-adaptive parallax barriers for low-rank light field approximation.National Science Foundation (U.S.) (grant CCF-0729126)National Research Foundation of Korea (grant 2009-352-D00232

    Synthetic Image Holograms

    Get PDF

    ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ ํ•€ํ™€ ๋ฐฉ์‹ ์ง‘์ ์˜์ƒ์— ๊ธฐ๋ฐ˜ํ•œ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ฐœ์„ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐ๊ณตํ•™๋ถ€, 2012. 8. ์ด๋ณ‘ํ˜ธ.์ตœ๊ทผ 10๋…„๊ฐ„, ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์žฅ์€ ๋ฏธ์„ธ ๊ณต์ •๊ณผ ์œ ๊ธฐ ๋ฐ ๋ฌด๊ธฐ ๋ฐœ๊ด‘ ์†Œ์ž์˜ ๋ฐœ๋‹ฌ๋กœ ์ธํ•˜์—ฌ ๊ธ‰์†๋„๋กœ ํ‰ํŒ ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์žฅ์œผ๋กœ ์ „ํ™˜๋˜์—ˆ๊ณ , ๋ณด๋‹ค ํ˜„์‹ค๊ฐ ์žˆ๋Š” ์˜์ƒ์„ ์žฌ์ƒํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ์„ ํ†ตํ•˜์—ฌ 2์ฐจ์› ๊ณ ํ™”์งˆ ์˜์ƒ์˜ ์‹œ๋Œ€์—์„œ 3์ฐจ์› ์ž…์ฒด ์˜์ƒ์˜ ์‹œ๋Œ€๋กœ ์ „ํ™˜๋˜์–ด ๊ฐ€๊ณ  ์žˆ๋‹ค. ์ด๋ฏธ TV์‹œ์žฅ๊ณผ ์˜ํ™” ์‹œ์žฅ์—๋Š” ํŽธ๊ด‘ ๋ฐฉ์‹์˜ ์•ˆ๊ฒฝ์„ ์ด์šฉํ•œ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์ž๋ฆฌ๋ฅผ ์žก๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋“ค์„ ํ™œ์šฉํ•œ ์ปจํ…์ธ  ๋˜ํ•œ ์ง€์†์ ์œผ๋กœ ์ œ์ž‘๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ถ๊ทน์ ์ธ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ํ–ฅํ•œ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ์˜ ์•ˆ๊ฒฝ์‹ ๋ฐฉ์‹์—์„œ ์•ˆ๊ฒฝ์„ ์ฐฉ์šฉํ•˜์ง€ ์•Š์œผ๋ฉด์„œ๋„ ๋‹ค์‹œ์ ์˜ 3์ฐจ์› ์˜์ƒ์„ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์‹์œผ๋กœ ์ง‘์ค‘ ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์‹ ์ค‘ ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ ํ•€ํ™€ํ˜• ์ง‘์ ์˜์ƒ์— ๊ธฐ๋ฐ˜์„ ๋‘” 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ฐœ์„ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ์ง€๊ธˆ๊นŒ์ง€ ์—ฐ๊ตฌ๋œ ๋‹ค์–‘ํ•œ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์‹ ์ค‘, ํŒจ๋Ÿด๋ž™์Šค ๋ฐฐ๋ฆฌ์–ด, ๋ Œํ‹ฐํ˜๋Ÿฌ์™€ ๊ฐ™์€ ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ ์ง‘์ ์˜์ƒ์€ ๊ฐ€์žฅ ์ƒ์šฉํ™”์— ๊ฐ€๊นŒ์šด ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์‹์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ƒ์šฉํ™”๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ์ˆ , ๊ด€์ฐฐ์ž์˜ ์ธ์ง€์š”์ธ, ๊ทธ๋ฆฌ๊ณ  ๊ด‘ํ•™์  ์ •๋ณด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์˜ ์„ธ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ์˜ ๋ฌธ์ œ์ ๋“ค์— ๋Œ€ํ•œ ๋…ผ์˜๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์ค‘, ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ ํ•€ํ™€(pinhole)ํ˜• ์ง‘์ ์˜์ƒ์„ ์ด ์„ธ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ ๊ฐœ์„ ํ•˜๋Š” ์—ฐ๊ตฌ์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ๋‹ด๊ณ  ์žˆ๋‹ค. ๋จผ์ € ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ์ˆ ์ ์ธ ์ธก๋ฉด์—์„œ๋Š”, ์ „๊ณ„๋ฐœ๊ด‘์†Œ์ž(electroluminescent film) ํ˜น์€ ํ‰ํŒ ๋””์Šคํ”Œ๋ ˆ์ด์— ๋ฐฐ์—ด๋œ ์ปฌ๋Ÿฌ ํ•„ํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•€ํ™€ํ˜• ์ง‘์ ์˜์ƒ์˜ ์‹œ์•ผ๊ฐ, ํ•ด์ƒ๋„, ๊ด‘์„  ์ง‘์ ๋„ ๊ทธ๋ฆฌ๊ณ  2์ฐจ์›/3์ฐจ์› ๋ณ€ํ™˜์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ € ๊นŠ์ด ํ‘œํ˜„ ๋ฒ”์œ„๊ฐ€ ๊ธฐ๋ณธ์ ์œผ๋กœ ๋„“์€ ํ•€ํ™€ํ˜• ์ง‘์ ์˜์ƒ์˜ 2์ฐจ์›/3์ฐจ์› ๋ณ€ํ™˜์œผ๋กœ์˜ ํ™•์žฅ์„ ์œ„ํ•˜์—ฌ ์ „๊ณ„๋ฐœ๊ด‘์†Œ์ž์— ๊ธฐ๋ฐ˜์„ ๋‘” ์ƒˆ๋กœ์šด ๊ด‘์› ๋ณ€ํ™˜ ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ์ „๊ณ„๋ฐœ๊ด‘์†Œ์ž๋Š” ๊ธฐ๋ณธ์ ์œผ๋กœ ์ž๋ฅด๊ฑฐ๋‚˜ ํœ˜๊ฑฐ๋‚˜ ํ˜น์€ ๊ตฌ๋ฉ์„ ๋šซ์–ด๋„ ๋ฐœ๊ด‘์— ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š๋Š” ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ์ „๊ณ„๋ฐœ๊ด‘์†Œ์ž์— ๊ท ์ผํ•œ ํ•€ํ™€์„ ๋ฐฐ์—ดํ•˜์—ฌ ๊ธฐ์กด์˜ ํ•€ํ™€ํ˜• ์ง‘์ ์˜์ƒ์œผ๋กœ ์ด์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ, 2์ฐจ์›/3์ฐจ์› ๋ณ€ํ™˜์ด ๊ฐ€๋Šฅํ•œ ์ง‘์ ์˜์ƒ์„ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ๊ณ , ๊ตฌ๋ถ€๋ฆฌ๋ฉด์„œ ๋ฐœ๊ด‘ ์ƒํƒœ๋ฅผ ์œ ์ง€ํ•˜๋Š” ํŠน์„ฑ์„ ์ด์šฉํ•˜์—ฌ ๊ด‘์‹œ์•ผ๊ฐ์„ ๊ฐ–๋Š” ๋ฐ˜์› ํ˜•ํƒœ์˜ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด๋กœ ์ œ์ž‘ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ 360๋„ ์ „์ฒด์—์„œ ๊ด€์ฐฐ์ด ๊ฐ€๋Šฅํ•œ ์ง‘์ ์˜์ƒ ๊ธฐ๋ฐ˜์˜ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด๋กœ ํ™•์žฅํ•˜์—ฌ ์ œ์•ˆํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ˜„์žฌ ๋Œ€์ค‘์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ์•ก์ • ๋””์Šคํ”Œ๋ ˆ์ด์ƒ์˜ ์ปฌ๋Ÿฌ ํ•„ํ„ฐ ์ธต์„ ํ•€ํ™€ ๋ฐฐ์—ด๊ณผ ๋น” ํ”„๋กœ์ ํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ด‘์„  ์ง‘์ ๋„, ํ•ด์ƒ๋„ ๊ทธ๋ฆฌ๊ณ  ๊นŠ์ด ํ‘œํ˜„ ๋ฒ”์œ„๋ฅผ ํ™•์žฅํ•œ ํ•€ํ™€ํ˜• ์ง‘์ ์˜์ƒ์œผ๋กœ ์ œ์•ˆํ•œ๋‹ค. ์‹ค์ œ ์•ก์ • ๋””์Šคํ”Œ๋ ˆ์ด์ƒ์˜ ์ปฌ๋Ÿฌ ํ•„ํ„ฐ๋Š” 3๊ฐ€์ง€ ์ƒ‰์œผ๋กœ ๋‚˜๋‰˜์–ด์ ธ ์žˆ๊ณ , ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐ๊ฐ ์ƒ‰ ์˜์—ญ์ด ๋‹ค๋ฅธ ํ•€ํ™€ ๋ฐฐ์—ด๋กœ ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด์™€ ํ•จ๊ป˜ ๋น” ํ”„๋กœ์ ํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ, ํ•œ ์š”์†Œ ์˜์ƒ์˜ ์˜์—ญ์ด ๊ธฐ์กด์˜ ๋ฐฉ์‹์— ๋น„ํ•ด ๋„“์–ด์ง€๊ณ  ์„œ๋กœ ์นจ๋ฒ”ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์–ด ํ•ด์ƒ๋„์™€ ๊ด‘์„  ์ง‘์ ๋„๊ฐ€ ์ตœ๋Œ€ 3๋ฐฐ ํ–ฅ์ƒ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ง‘์ ์˜์ƒ์˜ ๊ฐœ์„ ๊ณผ ํ•จ๊ป˜ ๋””์Šคํ”Œ๋ ˆ์ด ์ธก๋ฉด์—์„œ์˜ ๊ฐœ์„ ์—์„œ๋Š”, ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์˜ ํŠน์„ฑ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ 1์ฐจ์› ์ง‘์ ์˜์ƒ์„ ๋ถ„์„ํ•˜๊ณ  ์œตํ•ฉํ•˜๋Š” ์—ฐ๊ตฌ๋„ ์ง„ํ–‰ํ•œ๋‹ค. ๋‘ ๊ฐ€์ง€์˜ ๋‹ค๋ฅธ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์‹์„ ์œตํ•ฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, light field๋ฅผ ์ด์šฉํ•œ ๊ณต๊ฐ„-๊ฐ๋„ ๋ถ„ํฌ ๋ถ„์„๊ณผ ์ด์˜ ์ฃผํŒŒ์ˆ˜์˜์—ญ์—์„œ์˜ ๋ถ„์„์„ ์ง„ํ–‰ํ•œ๋‹ค. ๋ถ„์„์„ ํ†ตํ•ด ์–ป์–ด์ง„ ๋‘ ๋ฐฉ์‹์˜ ๊ณต๊ฐ„-๊ฐ๋„ ๋ถ„ํฌ ํŠน์ง•์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ 1์ฐจ์› ์ง‘์ ์˜์ƒ์„ ์‹œ๋ถ„ํ•  ๋ฐ ๋ถ€ํ”ฝ์…€๋ถ„ํ• ์„ ํ†ตํ•ด ํ•œ ๋””์Šคํ”Œ๋ ˆ์ด ์ƒ์—์„œ ๊ตฌํ˜„ํ•˜์—ฌ, ๋ณด๋‹ค ํ’ˆ์งˆ์ด ํ–ฅ์ƒ๋œ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋˜ ๋‹ค๋ฅธ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ณผ์ œ๋Š” ๊ด€์ฐฐ์ž์˜ ์ธ์ง€ ์š”์†Œ๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ ์ง‘์ ์˜์ƒ์—์„œ์˜ ๊นŠ์ด ํ•ด์ƒ๋„ ๋ฐ ์กฐ์ ˆ๋ ฅ ๋ฐ˜์‘์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค. ๋จผ์ € ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด ์ƒ์—์„œ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์ž์ฒด์˜ ํ•ด์ƒ๋„์™€ cardboard ํšจ๊ณผ์— ์˜ํ•œ ์ธ์ง€ ๊นŠ์ด ํ•ด์ƒ๋„ ๋ณ€ํ™”๋ฅผ ์‚ดํŽด๋ณด๊ธฐ ์œ„ํ•ด, ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ๋ฐ˜์˜ 3์ฐจ์› ๋ฐฉ์†ก ํ™˜๊ฒฝ์„ ๊ตฌ์ถ•ํ•˜๊ณ , ๋””์Šคํ”Œ๋ ˆ์ด ์ž์ฒด์˜ ๊นŠ์ด ํ•ด์ƒ๋„ ํ‘œํ˜„์˜ ์ œํ•œ, ๋‹ค์‹œ์  ์˜์ƒ ํ•ฉ์„ฑ ๊ณผ์ • ์ค‘์˜ ๊นŠ์ด ํ•ด์ƒ๋„ ํ‘œํ˜„์˜ ์ œํ•œ ๊ทธ๋ฆฌ๊ณ  cardboard ํšจ๊ณผ์— ์˜ํ•œ ๊นŠ์ด ํ•ด์ƒ๋„ ์ œํ•œ์„ ์ˆ˜์‹์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ , ๊ด€์ฐฐ์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์„ค๋ฌธ์„ ์ง„ํ–‰ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ๋‹ค์‹œ์  3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์†ก ํ™˜๊ฒฝ์—์„œ 3์ฐจ์› ์˜์ƒ์„ ์œ„ํ•œ ๊นŠ์ด์ •๋ณด์˜ ํ•ด์ƒ๋„๋ฅผ ์œ„ํ•œ ๊ธฐ์ค€์„ ์ œ์‹œํ•œ๋‹ค. ๋˜ํ•œ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์—์„œ ์ˆ˜๋ ด-์กฐ์ ˆ์˜ ์ถฉ๋Œ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ์˜๋˜๊ณ  ์žˆ๋Š” ์ดˆ๋‹ค์‹œ์  ์กฐ๊ฑด๊ณผ ์ง‘์ ์˜์ƒ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ฐํžˆ๊ธฐ ์œ„ํ•˜์—ฌ, ์ง‘์ ์˜์ƒ์—์„œ ์ดˆ๋‹ค์‹œ์  ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ์˜์—ญ์„ ๋ถ„์„ ๋ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง„ํ–‰ํ•˜๊ณ  ์ด ์˜์—ญ ์•ˆ๊ณผ ๋ฐ–์—์„œ ๊ด€์ฐฐ์ž์˜ ์กฐ์ ˆ๋ ฅ์„ ์ธก์ •ํ•œ๋‹ค. ์ด ๊ณผ์ •์„ ํ†ตํ•ด, ์ง‘์ ์˜์ƒ์—์„œ ์ดˆ๋‹ค์‹œ์  ์กฐ๊ฑด๊ณผ ๊ด€์ฐฐ์ž์˜ ์กฐ์ ˆ๋ ฅ ๋ณ€ํ™”์™€์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์ด์šฉํ•œ ๋˜ ๋‹ค๋ฅธ ๊ณผ์ œ์ธ ๊ด‘ํ•™์  ์ •๋ณด ์ฒ˜๋ฆฌ์—์„œ๋Š”, ์š”์†Œ์˜์ƒ๊ณผ ๋‹ค์‹œ์  ์˜์ƒ์„ ์ด์šฉํ•œ ๊นŠ์ด ์ถ”์ถœ๊ณผ 3์ฐจ์› ์˜์ƒ์˜ ์žฌํš๋“์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค. Optical flow์— ๊ธฐ๋ฐ˜์„ ๋‘” ๋ณด๋‹ค ์ •ํ™•ํ•œ ๊นŠ์ด ์ถ”์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ์š”์†Œ์˜์ƒ์—์„œ ์ถ”์ถœํ•œ ๋ถ€์˜์ƒ์˜ ๊นŠ์ด๋ฅผ ์ถ”์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ ์ด์˜ ์‘์šฉ์— ๋Œ€ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ ์„ค๋ช…ํ•œ๋‹ค. Optical flow์— ๊ธฐ๋ฐ˜์„ ๋‘” 3์ฐจ์› ๋ฌผ์ฒด์˜ ๊นŠ์ด ์ถ”์ถœ์„ ์ปดํ“จํ„ฐ๋ฅผ ์ด์šฉํ•œ ์‹ค์‚ฌ 3์ฐจ์› ์˜์ƒ์˜ ์žฌํš๋“์— ํ™œ์šฉํ•˜๋Š” ๊ฒฝ์šฐ, ์ง‘์ ์˜์ƒ์˜ ๋ณธ์งˆ์ ์ธ ๋ฌธ์ œ์ธ pseudoscopic ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์„ ํ†ตํ•œ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ์ˆ , ๊ด€์ฐฐ์ž์˜ ์ธ์ง€์š”์ธ, ๊ทธ๋ฆฌ๊ณ  ๊ด‘ํ•™์  ์ •๋ณด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์ ์ธ ์ธก๋ฉด์—์„œ์˜ ๊ฐœ์„  ๋ฐฉ๋ฒ•๋“ค์€ ์ถ”ํ›„ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์žฅ์˜ ํ™•๋Œ€์™€ ๊ฐ€์ •์šฉ TV์‹œ์žฅ์œผ๋กœ์˜ ์ง„์ถœ์— ํฌ๊ฒŒ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.This dissertation presents studies on improvement of three-dimensional (3D) displays based on multi-view display and pinhole-type integral imaging. Among various types of 3D displays, integral imaging and multi-view display such as parallax barrier and lenticular 3D display are almost commercialized autostereoscopic 3D display. For commercialization, autostereoscopic 3D display has three issues that are limitation of display technology, human factors related on human visual system and optical information processing technology. In this dissertation, the author will address the studies about the improvement methods for multi-view display and pinhole-type integral imaging in three issues. In the issue of display technology, the improvement methods of pinhole-type integral imaging using electroluminescent (EL) film and color filters on display panel are proposed to enhance the viewing angle, resolution, ray density and two-dimensional (2D)/3D convertibility. For large expressible depth range and 2D/3D convertibility in pinhole-type integral imaging, pinhole-type integral imaging is modified by new light source conversion layer based on EL film. The EL film has the advantage that it can operate continuously even when it is cut or punctured. Using this characteristic, the author generates an array of pinholes on an EL film to form a point light source array for reconstructing 3D images based on integral imaging. Taking advantage of the flexibility of EL films, a 2D/3D convertible integral imaging system with a wide viewing angle using a curved EL film is proposed which is extended to 360-degree viewable cylindrical 3D display system. For enhancement of ray density, resolution and expressible depth range in pinhole-type integral imaging, the system using color filter pinhole array on liquid crystal display panel with projection scheme is proposed. A color filter structure on liquid crystal display panel acts as pinhole array in integral imaging with separation of color channel. The use of color filter pinhole array and projection scheme can enlarge the region of one-elemental image and improve the resolution and ray density remarkably. In addition to the improvement of pinhole-type integral imaging, analysis and convergence of multi-view display and one-dimensional (1D) integral imaging are presented for improvement of characteristics in autostereoscopic display. For the convergence of two different autostereoscopic 3D display, multi-view display and integral imaging, light field analysis of spatio-angular distribution and its frequency domain analysis are performed. From the analysis, the convergence type of autostereoscopic 3D display based on multi-view display and 1D integral imaging is proposed by using time-multiplexing and sub-pixel multiplexing technique. On another issue in autostereoscopic 3D display, the depth resolution and accommodation response of human factors in multi-view display and integral imaging are researched. To find the effect of fundamental depth resolution and cardboard effect to the perceived depth resolution in multi-view display, the fundamental depth resolution and the cardboard effect from the synthesis process in the multi-view 3D TV broadcasting are analyzed and a subjective test is performed. In addition, the analysis and measurement of accommodation response of integral imaging with satisfying super multi-view display is performed to reveal the relation between the accommodation response of integral imaging and super multi-view condition. On the other issue of autostereoscopic 3D display, the optical information processing from elemental image and multi-view images in depth extraction and computational pickup method without pseudoscopic problem is presented. A more accurate depth extraction algorithm using optical flow from sub-images of elemental image is proposed and its applications are also presented in this dissertation.Abstract i Contents iv List of Figures ix List of Tables xvii Chapter 1 Introduction 1 1.1 Overview of autostereoscopic three-dimensional displays 1 1.2 Motivation of this dissertation 4 1.3 Scope and organization 7 Chapter 2 Enhancement of pinhole-type integral imaging using electroluminescent film and color filters on display panel 11 2.1 Integral imaging system using an electroluminescent film backlight for three-dimensional/two-dimensional convertibility and a curved structure 11 2.1.1 Introduction 11 2.1.2 Principles of 3D/2D convertible integral imaging using EL film 14 2.1.3 Experimental results 23 2.1.4 Conclusion 29 2.2 360-viewable cylindrical integral imaging system using a three-dimensionaltwo-dimensional switchable and flexible backlight 30 2.2.1 Introduction 30 2.2.2 Principles of the 360-degree viewable cylindrical integral imaging system 33 2.2.3 Analysis on the characteristic parameters and viewing zone of the 360-degree viewable cylindrical integral imaging system 36 2.2.4 Experiment 39 2.2.5 Conclusion 43 2.3 Integral imaging using color filter pinhole array on display panel 44 2.3.1 Introduction and motivation 44 2.3.2 Principles of proposed method 47 2.3.3 Experimental setup and results 54 2.3.4 Conclusion 60 Chapter 3 Analysis and convergence of multi-view display and one-dimensional integral imaging 62 3.1 Comparison of multi-view display and integral imaging 62 3.1.1 Principles of multi-view display and one-dimensional integral imaging 63 3.1.2 Principles of multi-view display and integral imaging in pickup methods 67 3.1.3 Analysis of multi-view display and integral imaging in light filed 73 3.2 Computational reacquisition of a real three-dimensional object for integral imaging without matching of pickup and display lens array 80 3.2.1 Introduction 80 3.2.2 Depth extraction and triangular mesh reconstruction from sub-images using optical flow 81 3.2.3 Conversion from point cloud to face texture information 83 3.2.4 Experimental result 85 3.2.5 Conclusion 87 3.3 Time-multiplexing and sub-pixel mapping of multi-view display and integral imaging 89 3.3.1 Design parameters of multi-view display and integral imaging 90 3.3.2 Convergence type of autostereoscopic display using time-multiplexing or sub-pixel mapping of multi-view display and one-dimensional integral imaging 91 3.3.3 Experimental result 94 Chapter 4 Perceived depth resolution and accommodation response of multi-view display and integral imaging 99 4.1 Effect of fundamental depth resolution and cardboard effect to perceived depth resolution on multi-view display 99 4.1.1 Introduction 100 4.1.2 Fundamental depth resolution from specification of slanted lenticular display 102 4.1.3 View synthesis parameters from specification of stereo pickup and multi-view display 105 4.1.4 Stereo pickup and multi-view synthesis of 3D object with varying depth resolution 109 4.1.5 Numerical comparison of synthesized view images in PSNR and NCC with varying depth resolution 113 4.1.6 Subjective test for limitation of perceived depth resolution in multi-view display 115 4.1.7 Conclusion 122 4.2 Effect of viewing region satisfying super multi-view condition in integral imaging 124 4.2.1 Introduction 124 4.2.2 Analysis of viewing region satisfying super multi-view condition in integral imaging 125 4.2.3 Expressible depth range and size of 3D object in integral imaging with super multi-view condition 128 4.2.4 Simulation 129 4.2.5 Accommodation response with super multi-view condition in integral imaging 131 4.2.6 Experimental result 132 4.2.7 Experimental result 136 Chapter 5 Conclusion 137 Bibliography 140 Appendix 148 ํ•œ๊ธ€ ์ดˆ๋ก 149Docto

    A compressive light field projection system

    Get PDF
    For about a century, researchers and experimentalists have strived to bring glasses-free 3D experiences to the big screen. Much progress has been made and light field projection systems are now commercially available. Unfortunately, available display systems usually employ dozens of devices making such setups costly, energy inefficient, and bulky. We present a compressive approach to light field synthesis with projection devices. For this purpose, we propose a novel, passive screen design that is inspired by angle-expanding Keplerian telescopes. Combined with high-speed light field projection and nonnegative light field factorization, we demonstrate that compressive light field projection is possible with a single device. We build a prototype light field projector and angle-expanding screen from scratch, evaluate the system in simulation, present a variety of results, and demonstrate that the projector can alternatively achieve super-resolved and high dynamic range 2D image display when used with a conventional screen.MIT Media Lab ConsortiumNatural Sciences and Engineering Research Council of Canada (NSERC Postdoctoral Fellowship)National Science Foundation (U.S.) (Grant NSF grant 0831281
    • โ€ฆ
    corecore