1,888 research outputs found

    Mobile devices for the remote acquisition of physiological and behavioral biomarkers in psychiatric clinical research

    Get PDF
    Psychiatric disorders are linked to a variety of biological, psychological, and contextual causes and consequences. Laboratory studies have elucidated the importance of several key physiological and behavioral biomarkers in the study of psychiatric disorders, but much less is known about the role of these biomarkers in naturalistic settings. These gaps are largely driven by methodological barriers to assessing biomarker data rapidly, reliably, and frequently outside the clinic or laboratory. Mobile health (mHealth) tools offer new opportunities to study relevant biomarkers in concert with other types of data (e.g., self-reports, global positioning system data). This review provides an overview on the state of this emerging field and describes examples from the literature where mHealth tools have been used to measure a wide array of biomarkers in the context of psychiatric functioning (e.g., psychological stress, anxiety, autism, substance use). We also outline advantages and special considerations for incorporating mHealth tools for remote biomarker measurement into studies of psychiatric illness and treatment and identify several specific opportunities for expanding this promising methodology. Integrating mHealth tools into this area may dramatically improve psychiatric science and facilitate highly personalized clinical care of psychiatric disorders

    VOCE Corpus: Ecologically Collected Speech Annotated with Physiological and Psychological Stress Assessments.

    Get PDF
    Public speaking is a widely requested professional skill, and at the same time an activity that causes one of the most common adult phobias (Miller and Stone, 2009). It is also known that the study of stress under laboratory conditions, as it is most commonly done, may provide only limited ecological validity (Wilhelm and Grossman, 2010). Previously, we introduced an inter-disciplinary methodology to enable collecting a large amount of recordings under consistent conditions (Aguiar et al., 2013). This paper introduces the VOCE corpus of speech annotated with stress indicators under naturalistic public speaking (PS) settings. The novelty of this corpus is that the recordings are carried out in objectively stressful PS situations, as recommended in (Zanstra and Johnston, 2011). The current database contains a total of 38 recordings, 13 of which contain full psychological and physiologic annotation. We show that the collected recordings validate the assumptions of the methodology, namely that participants experience stress during the PS events. We describe the various metrics that can be used for physiologic and psychological annotation, and we characterise the sample collected so far, providing evidence that demographics do not affect the relevant psychological or physiologic annotation. The collection activities are on-going, and we expect to increase the number of complete recordings in the corpus to 30 by June 2014

    Evaluating Mental Stress Among College Students Using Heart Rate and Hand Acceleration Data Collected from Wearable Sensors

    Full text link
    Stress is various mental health disorders including depression and anxiety among college students. Early stress diagnosis and intervention may lower the risk of developing mental illnesses. We examined a machine learning-based method for identification of stress using data collected in a naturalistic study utilizing self-reported stress as ground truth as well as physiological data such as heart rate and hand acceleration. The study involved 54 college students from a large campus who used wearable wrist-worn sensors and a mobile health (mHealth) application continuously for 40 days. The app gathered physiological data including heart rate and hand acceleration at one hertz frequency. The application also enabled users to self-report stress by tapping on the watch face, resulting in a time-stamped record of the self-reported stress. We created, evaluated, and analyzed machine learning algorithms for identifying stress episodes among college students using heart rate and accelerometer data. The XGBoost method was the most reliable model with an AUC of 0.64 and an accuracy of 84.5%. The standard deviation of hand acceleration, standard deviation of heart rate, and the minimum heart rate were the most important features for stress detection. This evidence may support the efficacy of identifying patterns in physiological reaction to stress using smartwatch sensors and may inform the design of future tools for real-time detection of stress

    Towards a Personalized Multi-Domain Digital Neurophenotyping Model for the Detection and Treatment of Mood Trajectories

    Get PDF
    The commercial availability of many real-life smart sensors, wearables, and mobile apps provides a valuable source of information about a wide range of human behavioral, physiological, and social markers that can be used to infer the user’s mental state and mood. However, there are currently no commercial digital products that integrate these psychosocial metrics with the real-time measurement of neural activity. In particular, electroencephalography (EEG) is a well-validated and highly sensitive neuroimaging method that yields robust markers of mood and affective processing, and has been widely used in mental health research for decades. The integration of wearable neuro-sensors into existing multimodal sensor arrays could hold great promise for deep digital neurophenotyping in the detection and personalized treatment of mood disorders. In this paper, we propose a multi-domain digital neurophenotyping model based on the socioecological model of health. The proposed model presents a holistic approach to digital mental health, leveraging recent neuroscientific advances, and could deliver highly personalized diagnoses and treatments. The technological and ethical challenges of this model are discussed

    Logging Stress and Anxiety Using a Gamified Mobile-based EMA Application, and Emotion Recognition Using a Personalized Machine Learning Approach

    Get PDF
    According to American Psychological Association (APA) more than 9 in 10 (94 percent) adults believe that stress can contribute to the development of major health problems, such as heart disease, depression, and obesity. Due to the subjective nature of stress, and anxiety, it has been demanding to measure these psychological issues accurately by only relying on objective means. In recent years, researchers have increasingly utilized computer vision techniques and machine learning algorithms to develop scalable and accessible solutions for remote mental health monitoring via web and mobile applications. To further enhance accuracy in the field of digital health and precision diagnostics, there is a need for personalized machine-learning approaches that focus on recognizing mental states based on individual characteristics, rather than relying solely on general-purpose solutions. This thesis focuses on conducting experiments aimed at recognizing and assessing levels of stress and anxiety in participants. In the initial phase of the study, a mobile application with broad applicability (compatible with both Android and iPhone platforms) is introduced (we called it STAND). This application serves the purpose of Ecological Momentary Assessment (EMA). Participants receive daily notifications through this smartphone-based app, which redirects them to a screen consisting of three components. These components include a question that prompts participants to indicate their current levels of stress and anxiety, a rating scale ranging from 1 to 10 for quantifying their response, and the ability to capture a selfie. The responses to the stress and anxiety questions, along with the corresponding selfie photographs, are then analyzed on an individual basis. This analysis focuses on exploring the relationships between self-reported stress and anxiety levels and potential facial expressions indicative of stress and anxiety, eye features such as pupil size variation and eye closure, and specific action units (AUs) observed in the frames over time. In addition to its primary functions, the mobile app also gathers sensor data, including accelerometer and gyroscope readings, on a daily basis. This data holds potential for further analysis related to stress and anxiety. Furthermore, apart from capturing selfie photographs, participants have the option to upload video recordings of themselves while engaging in two neuropsychological games. These recorded videos are then subjected to analysis in order to extract pertinent features that can be utilized for binary classification of stress and anxiety (i.e., stress and anxiety recognition). The participants that will be selected for this phase are students aged between 18 and 38, who have received recent clinical diagnoses indicating specific stress and anxiety levels. In order to enhance user engagement in the intervention, gamified elements - an emerging trend to influence user behavior and lifestyle - has been utilized. Incorporating gamified elements into non-game contexts (e.g., health-related) has gained overwhelming popularity during the last few years which has made the interventions more delightful, engaging, and motivating. In the subsequent phase of this research, we conducted an AI experiment employing a personalized machine learning approach to perform emotion recognition on an established dataset called Emognition. This experiment served as a simulation of the future analysis that will be conducted as part of a more comprehensive study focusing on stress and anxiety recognition. The outcomes of the emotion recognition experiment in this study highlight the effectiveness of personalized machine learning techniques and bear significance for the development of future diagnostic endeavors. For training purposes, we selected three models, namely KNN, Random Forest, and MLP. The preliminary performance accuracy results for the experiment were 93%, 95%, and 87% respectively for these models

    Attentional bias, alcohol craving, and anxiety implications of the virtual reality cue-exposure therapy in severe alcohol use disorder: a case report

    Get PDF
    Aims: Attentional bias (AB), alcohol craving, and anxiety have important implications in the development and maintenance of alcohol use disorder (AUD). The current study aims to test the effectiveness of a Virtual Reality Cue-Exposure Therapy (VR-CET) to reduce levels of alcohol craving and anxiety and prompt changes in AB toward alcohol content. Method: A 49-year-old male participated in this study, diagnosed with severe AUD, who also used tobacco and illicit substances on an occasional basis and who made several failed attempts to cease substance misuse. The protocol consisted of six VR-CET booster sessions and two assessment sessions (pre- and post-VR-CET) over the course of 5 weeks. The VR-CET program consisted of booster therapy sessions based on virtual reality (VR) exposure to preferred alcohol-related cues and contexts. The initial and final assessment sessions were focused on exploring AB, alcohol craving, and anxiety using paper-and-pencil instruments and the eye-tracking (ET) and VR technologies at different time points. Results: Pre and post assessment sessions indicated falls on the scores of all instruments assessing alcohol craving, anxiety, and AB. Conclusions: This case report, part of a larger project, demonstrates the effectiveness of the VR-CET booster sessions in AUD. In the post-treatment measurements, a variety of instruments showed a change in the AB pattern and an improvement in craving and anxiety responses. As a result of the systematic desensitization, virtual exposure gradually reduced the responses to significant alcohol-related cues and contexts. The implications for AB, anxiety and craving are discussed
    • …
    corecore