345,987 research outputs found

    A Type System For Call-By-Name Exceptions

    Full text link
    We present an extension of System F with call-by-name exceptions. The type system is enriched with two syntactic constructs: a union type for programs whose execution may raise an exception at top level, and a corruption type for programs that may raise an exception in any evaluation context (not necessarily at top level). We present the syntax and reduction rules of the system, as well as its typing and subtyping rules. We then study its properties, such as confluence. Finally, we construct a realizability model using orthogonality techniques, from which we deduce that well-typed programs are weakly normalizing and that the ones who have the type of natural numbers really compute a natural number, without raising exceptions.Comment: 25 page

    Experience with statically-generated proxies for facilitating Java runtime specialisation

    Get PDF
    Issues pertaining to mechanisms which can be used to change the behaviour of Java classes at runtime are discussed. The proxy mechanism is compared to, and contrasted with other standard approaches to this problem. Some of the problems the proxy mechanism is subject to are expanded upon. The question of whether statically-developed proxies are a viable alternative to bytecode rewriting was investigated by means of the JavaCloak system, which uses statically-generated proxies to alter the runtime behaviour of externally-developed code. The issues addressed include ensuring the type safety, dealing with the self problem, object encapsulation, and issues of object identity and equality. Some performance figures are provided which demonstrate the load the JavaCloak proxy mechanism places on the system

    The C Object System: Using C as a High-Level Object-Oriented Language

    Full text link
    The C Object System (Cos) is a small C library which implements high-level concepts available in Clos, Objc and other object-oriented programming languages: uniform object model (class, meta-class and property-metaclass), generic functions, multi-methods, delegation, properties, exceptions, contracts and closures. Cos relies on the programmable capabilities of the C programming language to extend its syntax and to implement the aforementioned concepts as first-class objects. Cos aims at satisfying several general principles like simplicity, extensibility, reusability, efficiency and portability which are rarely met in a single programming language. Its design is tuned to provide efficient and portable implementation of message multi-dispatch and message multi-forwarding which are the heart of code extensibility and reusability. With COS features in hand, software should become as flexible and extensible as with scripting languages and as efficient and portable as expected with C programming. Likewise, Cos concepts should significantly simplify adaptive and aspect-oriented programming as well as distributed and service-oriented computingComment: 18

    Dynamic Package Interfaces - Extended Version

    Full text link
    A hallmark of object-oriented programming is the ability to perform computation through a set of interacting objects. A common manifestation of this style is the notion of a package, which groups a set of commonly used classes together. A challenge in using a package is to ensure that a client follows the implicit protocol of the package when calling its methods. Violations of the protocol can cause a runtime error or latent invariant violations. These protocols can extend across different, potentially unboundedly many, objects, and are specified informally in the documentation. As a result, ensuring that a client does not violate the protocol is hard. We introduce dynamic package interfaces (DPI), a formalism to explicitly capture the protocol of a package. The DPI of a package is a finite set of rules that together specify how any set of interacting objects of the package can evolve through method calls and under what conditions an error can happen. We have developed a dynamic tool that automatically computes an approximation of the DPI of a package, given a set of abstraction predicates. A key property of DPI is that the unbounded number of configurations of objects of a package are summarized finitely in an abstract domain. This uses the observation that many packages behave monotonically: the semantics of a method call over a configuration does not essentially change if more objects are added to the configuration. We have exploited monotonicity and have devised heuristics to obtain succinct yet general DPIs. We have used our tool to compute DPIs for several commonly used Java packages with complex protocols, such as JDBC, HashSet, and ArrayList.Comment: The only changes compared to v1 are improvements to the Abstract and Introductio

    Ada style guide (version 1.1)

    Get PDF
    Ada is a programming language of considerable expressive power. The Ada Language Reference Manual provides a thorough definition of the language. However, it does not offer sufficient guidance on the appropriate use of Ada's powerful features. For this reason, the Goddard Space Flight Center Ada User's Group has produced this style guide which addresses such program style issues. The guide covers three areas of Ada program style: the structural decomposition of a program; the coding and the use of specific Ada features; and the textural formatting of a program

    Dynamic and Transparent Analysis of Commodity Production Systems

    Full text link
    We propose a framework that provides a programming interface to perform complex dynamic system-level analyses of deployed production systems. By leveraging hardware support for virtualization available nowadays on all commodity machines, our framework is completely transparent to the system under analysis and it guarantees isolation of the analysis tools running on its top. Thus, the internals of the kernel of the running system needs not to be modified and the whole platform runs unaware of the framework. Moreover, errors in the analysis tools do not affect the running system and the framework. This is accomplished by installing a minimalistic virtual machine monitor and migrating the system, as it runs, into a virtual machine. In order to demonstrate the potentials of our framework we developed an interactive kernel debugger, nicknamed HyperDbg. HyperDbg can be used to debug any critical kernel component, and even to single step the execution of exception and interrupt handlers.Comment: 10 pages, To appear in the 25th IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Belgium, 20-24 September 201
    • …
    corecore