130,652 research outputs found

    Context-Aware Service Discovering System for Nomad Users

    No full text
    International audienceThis paper presents an architecture for a system that provides nomad users, context-aware personalised services. Users might need any sort of services: information about the weather forecast for the next day, or about a museum in the neighbour worth to visit. These services are known as stateless services. More complex situations ocurre when services are stateful. Such services are, for example those which need users to be logged in (e.g. booking a room in a hotel). The question discussed in the text are those related to: i) user's privacy, ii) recommendation and discovery of services, iii) composition of recommended services into a composite service, and iv) execution of the resulting composite service

    Context-Aware Service Discovering System for Nomad Users

    Get PDF
    International audienceThis paper presents an architecture for a system that provides nomad users, context-aware personalised services. Users might need any sort of services: information about the weather forecast for the next day, or about a museum in the neighbour worth to visit. These services are known as stateless services. More complex situations ocurre when services are stateful. Such services are, for example those which need users to be logged in (e.g. booking a room in a hotel). The question discussed in the text are those related to: i) user's privacy, ii) recommendation and discovery of services, iii) composition of recommended services into a composite service, and iv) execution of the resulting composite service

    Personalizable Service Discovery in Pervasive Systems

    Get PDF
    Today, telecom providers are facing changing challenges. To stay ahead in the competition and provide market leading offerings, carriers need to enable a global ecosystem of third party independent application developers to deliver converged services. This is the aim of leveraging a open standardsbased service delivery platform. To identify and to cope with those challenges is the main target of the EU funded project IST DAIDALOS II. And a central point to satisfy the changing user needs is the provision of a well working, user friendly and personalized service discovery. This paper describes our work in the project on a middleware in a framework for pervasive service usage. We have designed an architecture for it, that enables full transparency to the user, grants high compatibility and extendability by a modular and pluggable conception and allows for interoperability with most known service discovery protocols. Our Multi-Protocol Service Discovery and the Four Phases Service Filtering concept enabling personalization should allow for the best possible results in service discovery

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Ontology-Based Context-Aware Service Discovery for Pervasive Environments

    Get PDF
    Existing service discovery protocols use a service matching process in order to offer services of interest to the clients. Potentially, the context information of the services and client can be used to improve the quality of service matching. To make use of context information in service matching, service discovery needs to address certain challenges. Firstly, it is required that the context information should have unambiguous representation. Secondly, the mobile devices should be able to disseminate context information seamlessly in the fixed network. And thirdly, dynamic nature of the context information should be taken into account. The proposed Context Aware Service Discovery (CASD) architecture deals with these challenges by means of an ontological representation and processing of context information, a concept of nomadic mobile context source and a mechanism of persistent service discovery respectively. This paper discusses proposed CASD architecture, its implementation and suggests further enhancements

    Composition and Self-Adaptation of Service-Based Systems with Feature Models

    Get PDF
    The adoption of mechanisms for reusing software in pervasive systems has not yet become standard practice. This is because the use of pre-existing software requires the selection, composition and adaptation of prefabricated software parts, as well as the management of some complex problems such as guaranteeing high levels of efficiency and safety in critical domains. In addition to the wide variety of services, pervasive systems are composed of many networked heterogeneous devices with embedded software. In this work, we promote the safe reuse of services in service-based systems using two complementary technologies, Service-Oriented Architecture and Software Product Lines. In order to do this, we extend both the service discovery and composition processes defined in the DAMASCo framework, which currently does not deal with the service variability that constitutes pervasive systems. We use feature models to represent the variability and to self-adapt the services during the composition in a safe way taking context changes into consideration. We illustrate our proposal with a case study related to the driving domain of an Intelligent Transportation System, handling the context information of the environment.Work partially supported by the projects TIN2008-05932, TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tec

    VOLARE: Adaptive Web Service Discovery Middleware for Mobile Systems

    Get PDF
    With the recent advent and widespread use of smart mobile devices, the flexibility and versatility offered by Service Oriented Architecture's (SOA) makes it an ideal approach to use in the rapidly changing mobile environment. However, the mobile setting presents a set of new challenges that service discovery methods developed for nonmobile environments cannot address. The requirements a mobile client device will have from a Web service may change due to changes in the context or the resources of the client device. In a similar manner, a mobile device that acts as a Web service provider will have different capabilities depending on its status, which may also change dramatically during runtime. This paper introduces VOLARE, a middleware-based solution that will monitor the resources and context of the device, and adapt service requests accordingly. The same method will be used to adapt the Quality of Service (QoS) levels advertised by service providers, to realistically reflect each provider's capabilities at any given moment. This approach will allow for more resource-efficient and accurate service discovery in mobile systems and will enable more reliable provider functionality in mobile devices
    • 

    corecore