2,111 research outputs found

    Parametric, Secure and Compact Implementation of RSA on FPGA

    Get PDF
    We present a fast, efficient, and parameterized modular multiplier and a secure exponentiation circuit especially intended for FPGAs on the low end of the price range. The design utilizes dedicated block multipliers as the main functional unit and Block-RAM as storage unit for the operands. The adopted design methodology allows adjusting the number of multipliers, the radix used in the multipliers, and number of words to meet the system requirements such as available resources, precision and timing constraints. The architecture, based on the Montgomery modular multiplication algorithm, utilizes a pipelining technique that allows concurrent operation of hardwired multipliers. Our design completes 1020-bit and 2040-bit modular multiplications in 7.62 μs and 27.0 μs, respectively. The multiplier uses a moderate amount of system resources while achieving the best area-time product in literature. 2040-bit modular exponentiation engine can easily fit into Xilinx Spartan-3E 500; moreover the exponentiation circuit withstands known side channel attacks

    Bit-level pipelined digit-serial array processors

    Get PDF
    A new architecture for high performance digit-serial vector inner product (VIP) which can be pipelined to the bit-level is introduced. The design of the digit-serial vector inner product is based on a new systematic design methodology using radix-2n arithmetic. The proposed architecture allows a high level of bit-level pipelining to increase the throughput rate with minimum initial delay and minimum area. This will give designers greater flexibility in finding the best tradeoff between hardware cost and throughput rate. It is shown that sub-digit pipelined digit-serial structure can achieve a higher throughput rate with much less area consumption than an equivalent bit-parallel structure. A twin-pipe architecture to double the throughput rate of digit-serial multipliers and consequently that of the digit-serial vector inner product is also presented. The effect of the number of pipelining levels and the twin-pipe architecture on the throughput rate and hardware cost are discussed. A two's complement digit-serial architecture which can operate on both negative and positive numbers is also presented

    A framework for FPGA functional units in high performance computing

    Get PDF
    FPGAs make it practical to speed up a program by defining hardware functional units that perform calculations faster than can be achieved in software. Specialised digital circuits avoid the overhead of executing sequences of instructions, and they make available the massive parallelism of the components. The FPGA operates as a coprocessor controlled by a conventional computer. An application that combines software with hardware in this way needs an interface between a communications port to the processor and the signals connected to the functional units. We present a framework that supports the design of such systems. The framework consists of a generic controller circuit defined in VHDL that can be configured by the user according to the needs of the functional units and the I/O channel. The controller contains a register file and a pipelined programmable register transfer machine, and it supports the design of both stateless and stateful functional units. Two examples are described: the implementation of a set of basic stateless arithmetic functional units, and the implementation of a stateful algorithm that exploits circuit parallelism

    A Methodology to Design Pipelined Simulated Annealing Kernel Accelerators on Space-Borne Field-Programmable Gate Arrays

    Get PDF
    Increased levels of science objectives expected from spacecraft systems necessitate the ability to carry out fast on-board autonomous mission planning and scheduling. Heterogeneous radiation-hardened Field Programmable Gate Arrays (FPGAs) with embedded multiplier and memory modules are well suited to support the acceleration of scheduling algorithms. A methodology to design circuits specifically to accelerate Simulated Annealing Kernels (SAKs) in event scheduling algorithms is shown. The main contribution of this thesis is the low complexity scoring calculation used for the heuristic mapping algorithm used to balance resource allocation across a coarse-grained pipelined data-path. The methodology was exercised over various kernels with different cost functions and problem sizes. These test cases were benchedmarked for execution time, resource usage, power, and energy on a Xilinx Virtex 4 LX QR 200 FPGA and a BAE RAD 750 microprocessor

    Circuit design and analysis for on-FPGA communication systems

    No full text
    On-chip communication system has emerged as a prominently important subject in Very-Large- Scale-Integration (VLSI) design, as the trend of technology scaling favours logics more than interconnects. Interconnects often dictates the system performance, and, therefore, research for new methodologies and system architectures that deliver high-performance communication services across the chip is mandatory. The interconnect challenge is exacerbated in Field-Programmable Gate Array (FPGA), as a type of ASIC where the hardware can be programmed post-fabrication. Communication across an FPGA will be deteriorating as a result of interconnect scaling. The programmable fabrics, switches and the specific routing architecture also introduce additional latency and bandwidth degradation further hindering intra-chip communication performance. Past research efforts mainly focused on optimizing logic elements and functional units in FPGAs. Communication with programmable interconnect received little attention and is inadequately understood. This thesis is among the first to research on-chip communication systems that are built on top of programmable fabrics and proposes methodologies to maximize the interconnect throughput performance. There are three major contributions in this thesis: (i) an analysis of on-chip interconnect fringing, which degrades the bandwidth of communication channels due to routing congestions in reconfigurable architectures; (ii) a new analogue wave signalling scheme that significantly improves the interconnect throughput by exploiting the fundamental electrical characteristics of the reconfigurable interconnect structures. This new scheme can potentially mitigate the interconnect scaling challenges. (iii) a novel Dynamic Programming (DP)-network to provide adaptive routing in network-on-chip (NoC) systems. The DP-network architecture performs runtime optimization for route planning and dynamic routing which, effectively utilizes the in-silicon bandwidth. This thesis explores a new horizon in reconfigurable system design, in which new methodologies and concepts are proposed to enhance the on-FPGA communication throughput performance that is of vital importance in new technology processes
    corecore