46,556 research outputs found

    Citation and peer review of data: moving towards formal data publication

    Get PDF
    This paper discusses many of the issues associated with formally publishing data in academia, focusing primarily on the structures that need to be put in place for peer review and formal citation of datasets. Data publication is becoming increasingly important to the scientific community, as it will provide a mechanism for those who create data to receive academic credit for their work and will allow the conclusions arising from an analysis to be more readily verifiable, thus promoting transparency in the scientific process. Peer review of data will also provide a mechanism for ensuring the quality of datasets, and we provide suggestions on the types of activities one expects to see in the peer review of data. A simple taxonomy of data publication methodologies is presented and evaluated, and the paper concludes with a discussion of dataset granularity, transience and semantics, along with a recommended human-readable citation syntax

    Mixed Reality Architecture: a dynamic architectural topology

    Get PDF
    Architecture can be shown to structure patterns of co-presence and in turn to be structured itself by the rules and norms of the society present within it. This two-way relationship exists in a surprisingly stable framework, as fundamental changes to buildings are slow and costly. At the same time, change within organisations is increasingly rapid and buildings are used to accommodate some of that change. This adaptation can be supported by the use of telecommunication technologies, overcoming the need for co-presence during social interaction. However, often this results in a loss of accountability or ‘civic legibility’, as the link between physical location and social activity is broken. In response to these considerations, Mixed Reality Architecture (MRA) was developed. MRA links multiple physical spaces across a shared 3D virtual world. We report on the design of MRA, including the key concept of the Mixed Reality Architectural Cell, a novel architectural interface between architectural spaces that are remote to each other. An in-depth study lasting one year and involving six office-based MRACells, used video recordings, the analysis of event logs, diaries and an interview survey. This produced a series of ethnographic vignettes describing social interaction within MRA in detail. In this paper we concentrate on the topological properties of MRA. It can be shown that the dynamic topology of MRA and social interaction taking place within it are fundamentally intertwined. We discuss how topological adjacencies across virtual space change the integration of the architectural spaces that MRA is installed in. We further reflect on how the placement of MRA technology in different parts of an office space (deep or shallow) impacts on the nature of that particular space. Both the above can be shown to influence movement through the building and social interaction taking place within it. These findings are directly relevant to new buildings that need to be designed to accommodate organisational change in future but also to existing building stock that might be very hard to adapt. We are currently expanding the system to new sites and are planning changes to the infrastructure of MRA as well as its interactional interface

    Evaluating Knowledge Representation and Reasoning Capabilites of Ontology Specification Languages

    Get PDF
    The interchange of ontologies across the World Wide Web (WWW) and the cooperation among heterogeneous agents placed on it is the main reason for the development of a new set of ontology specification languages, based on new web standards such as XML or RDF. These languages (SHOE, XOL, RDF, OIL, etc) aim to represent the knowledge contained in an ontology in a simple and human-readable way, as well as allow for the interchange of ontologies across the web. In this paper, we establish a common framework to compare the expressiveness of "traditional" ontology languages (Ontolingua, OKBC, OCML, FLogic, LOOM) and "web-based" ontology languages. As a result of this study, we conclude that different needs in KR and reasoning may exist in the building of an ontology-based application, and these needs must be evaluated in order to choose the most suitable ontology language(s)

    Heuristic Ranking in Tightly Coupled Probabilistic Description Logics

    Full text link
    The Semantic Web effort has steadily been gaining traction in the recent years. In particular,Web search companies are recently realizing that their products need to evolve towards having richer semantic search capabilities. Description logics (DLs) have been adopted as the formal underpinnings for Semantic Web languages used in describing ontologies. Reasoning under uncertainty has recently taken a leading role in this arena, given the nature of data found on theWeb. In this paper, we present a probabilistic extension of the DL EL++ (which underlies the OWL2 EL profile) using Markov logic networks (MLNs) as probabilistic semantics. This extension is tightly coupled, meaning that probabilistic annotations in formulas can refer to objects in the ontology. We show that, even though the tightly coupled nature of our language means that many basic operations are data-intractable, we can leverage a sublanguage of MLNs that allows to rank the atomic consequences of an ontology relative to their probability values (called ranking queries) even when these values are not fully computed. We present an anytime algorithm to answer ranking queries, and provide an upper bound on the error that it incurs, as well as a criterion to decide when results are guaranteed to be correct.Comment: Appears in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI2012

    Affordances for learning in a non-linear narrative medium

    Get PDF
    A multimedia CD makes an impressive resource for the scholar-researcher, but students unfamiliar with the subject-matter may not always work so effectively with such a resource. Without any narrative structure, how does the novice cope? The paper describes how we are investigating the design features that 'afford' activities that generate learning: What are the design features that encourage students to practise the role of the scholar? What encourages them to explore, but also to reflect on their analysis of the data they find? What kind of learning takes place when students are allowed to explore at will? The paper goes on to compare the learning experiences of students using commercial CDs with those using material with contrasting designs, in an attempt to identify the design features that afford constructive learning activities. It concludes with an interpretation of the findings, comparing them with work in related educational media, and situating the findings in the context of a conversational framework for learning

    Probabilistic Model Checking for Energy Analysis in Software Product Lines

    Full text link
    In a software product line (SPL), a collection of software products is defined by their commonalities in terms of features rather than explicitly specifying all products one-by-one. Several verification techniques were adapted to establish temporal properties of SPLs. Symbolic and family-based model checking have been proven to be successful for tackling the combinatorial blow-up arising when reasoning about several feature combinations. However, most formal verification approaches for SPLs presented in the literature focus on the static SPLs, where the features of a product are fixed and cannot be changed during runtime. This is in contrast to dynamic SPLs, allowing to adapt feature combinations of a product dynamically after deployment. The main contribution of the paper is a compositional modeling framework for dynamic SPLs, which supports probabilistic and nondeterministic choices and allows for quantitative analysis. We specify the feature changes during runtime within an automata-based coordination component, enabling to reason over strategies how to trigger dynamic feature changes for optimizing various quantitative objectives, e.g., energy or monetary costs and reliability. For our framework there is a natural and conceptually simple translation into the input language of the prominent probabilistic model checker PRISM. This facilitates the application of PRISM's powerful symbolic engine to the operational behavior of dynamic SPLs and their family-based analysis against various quantitative queries. We demonstrate feasibility of our approach by a case study issuing an energy-aware bonding network device.Comment: 14 pages, 11 figure
    corecore