33 research outputs found

    Ultrasound Indoor Positioning System Based on a Low-Power Wireless Sensor Network Providing Sub-Centimeter Accuracy

    Get PDF
    This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF) of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA) scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse) less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm.Junta de Andalucía P08-TIC-0388

    A survey on acoustic positioning systems for location-based services

    Get PDF
    Positioning systems have become increasingly popular in the last decade for location-based services, such as navigation, and asset tracking and management. As opposed to outdoor positioning, where the global navigation satellite system became the standard technology, there is no consensus yet for indoor environments despite the availability of different technologies, such as radio frequency, magnetic field, visual light communications, or acoustics. Within these options, acoustics emerged as a promising alternative to obtain high-accuracy low-cost systems. Nevertheless, acoustic signals have to face very demanding propagation conditions, particularly in terms of multipath and Doppler effect. Therefore, even if many acoustic positioning systems have been proposed in the last decades, it remains an active and challenging topic. This article surveys the developed prototypes and commercial systems that have been presented since they first appeared around the 1980s to 2022. We classify these systems into different groups depending on the observable that they use to calculate the user position, such as the time-of-flight, the received signal strength, or the acoustic spectrum. Furthermore, we summarize the main properties of these systems in terms of accuracy, coverage area, and update rate, among others. Finally, we evaluate the limitations of these groups based on the link budget approach, which gives an overview of the system's coverage from parameters such as source and noise level, detection threshold, attenuation, and processing gain.Agencia Estatal de InvestigaciónResearch Council of Norwa

    Indoor Sound Based Localization

    Get PDF

    Optical Synchronization of Time-of-Flight Cameras

    Get PDF
    Time-of-Flight (ToF)-Kameras erzeugen Tiefenbilder (3D-Bilder), indem sie Infrarotlicht aussenden und die Zeit messen, bis die Reflexion des Lichtes wieder empfangen wird. Durch den Einsatz mehrerer ToF-Kameras können ihre vergleichsweise geringere Auflösungen überwunden, das Sichtfeld vergrößert und Verdeckungen reduziert werden. Der gleichzeitige Betrieb birgt jedoch die Möglichkeit von Störungen, die zu fehlerhaften Tiefenmessungen führen. Das Problem der gegenseitigen Störungen tritt nicht nur bei Mehrkamerasystemen auf, sondern auch wenn mehrere unabhängige ToF-Kameras eingesetzt werden. In dieser Arbeit wird eine neue optische Synchronisation vorgestellt, die keine zusätzliche Hardware oder Infrastruktur erfordert, um ein Zeitmultiplexverfahren (engl. Time-Division Multiple Access, TDMA) für die Anwendung mit ToF-Kameras zu nutzen, um so die Störungen zu vermeiden. Dies ermöglicht es einer Kamera, den Aufnahmeprozess anderer ToF-Kameras zu erkennen und ihre Aufnahmezeiten schnell zu synchronisieren, um störungsfrei zu arbeiten. Anstatt Kabel zur Synchronisation zu benötigen, wird nur die vorhandene Hardware genutzt, um eine optische Synchronisation zu erreichen. Dazu wird die Firmware der Kamera um das Synchronisationsverfahren erweitert. Die optische Synchronisation wurde konzipiert, implementiert und in einem Versuchsaufbau mit drei ToF-Kameras verifiziert. Die Messungen zeigen die Wirksamkeit der vorgeschlagenen optischen Synchronisation. Während der Experimente wurde die Bildrate durch das zusätzliche Synchronisationsverfahren lediglich um etwa 1 Prozent reduziert.Time-of-Flight (ToF) cameras produce depth images (three-dimensional images) by measuring the time between the emission of infrared light and the reception of its reflection. A setup of multiple ToF cameras may be used to overcome their comparatively low resolution, increase the field of view, and reduce occlusion. However, the simultaneous operation of multiple ToF cameras introduces the possibility of interference resulting in erroneous depth measurements. The problem of interference is not only related to a collaborative multicamera setup but also to multiple ToF cameras operating independently. In this work, a new optical synchronization for ToF cameras is presented, requiring no additional hardware or infrastructure to utilize a time-division multiple access (TDMA) scheme to mitigate interference. It effectively enables a camera to sense the acquisition process of other ToF cameras and rapidly synchronizes its acquisition times to operate without interference. Instead of requiring cables to synchronize, only the existing hardware is utilized to enable an optical synchronization. To achieve this, the camera’s firmware is extended with the synchronization procedure. The optical synchronization has been conceptualized, implemented, and verified with an experimental setup deploying three ToF cameras. The measurements show the efficacy of the proposed optical synchronization. During the experiments, the frame rate was reduced by only about 1% due to the synchronization procedure

    Acoustic indoor localization employing code division multiple access

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2010Includes bibliographical references (leaves: 107-108)Text in English; Abstract: Turkish and Englishxvi, 160 69 leavesIndoor localization becomes a demand that comes into prominence day by day. Although extensively used outdoor location systems have been proposed, they can not operate in indoor applications. Hence new investigations have been carried on for accurate indoor localization in the last decade. In this thesis, a new indoor location system, that aims to locate an entity within an accuracy of about 2 cm using ordinary and inexpensive off-the-shelf devices, has been proposed and an implementation has been applied to evaluate the system performance. Therefore, time of arrival measurements of acoustic signals, which are binary phase shift keying modulated Gold code sequences using direct sequence spread spectrum technique, are done. Direct sequence-code division multiple access is applied to perform simultaneous accurate distance measurements and provides immunity to noise and interference. Two methods have been proposed for the location estimation. The first method takes the average of four location estimates obtained by trilateration technique. In the second method, only a single robust position estimate is obtained using three distances while the least reliable fourth distance measurement is not taken into account. The system performance is evaluated at positions from two height levels using two sets of variables determined by experimental results. The precision distributions in the work area and the precision versus accuracy plots depict the system performance for different sets of variables. The proposed system provides location estimates of better than 2 cm accuracy within 99% precision. Eventually, created graphical user interface provides a user friendly environment to adjust the parameters

    Desenvolvimento de metodologias para localização indoor de smartphones com exatidão ao centímetro

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaThis thesis describes the design and implementation of a reliable centimeter-level indoor positioning system fully compatible with a conventional smartphone. The proposed system takes advantage of the smartphone audio I/O and processing capabilities to perform acoustic ranging in the audio band using non-invasive audio signals and it has been developed having in mind applications that require high accuracy, such as augmented reality, virtual reality, gaming and audio guides. The system works in a distributed operation mode, i.e. each smartphone is able to obtain its own position using only acoustic signals. To support the positioning system, a Wireless Sensor Network (WSN) of synchronized acoustic beacons is used. To keep the infrastructure in sync we have developed an Automatic Time Synchronization and Syntonization (ATSS) protocol with a standard deviation of the sync offset error below 1.25 μs. Using an improved Time Difference of Arrival (TDoA) estimation approach (which takes advantage of the beacon signals’ periodicity) and by performing Non-Line-of-Sight (NLoS) mitigation, we were able to obtain very stable and accurate position estimates with an absolute mean error of less than 10 cm in 95% of the cases and a mean standard deviation of 2.2 cm for a position refresh period of 350 ms.Esta tese descreve o projeto e a implementação de um sistema de localização para ambientes interiores totalmente compatível com um smartphone convencional. O sistema proposto explora a capacidade de aquisição de sinais áudio e de processamento do smartphone para medir distâncias utilizando sinais acústicos na banda do audível; foram utilizados sinais áudio não-invasivos, i.e. com reduzido impacto perceptual em humanos. No desenvolvimento deste sistema foram consideradas aplicações que exigem elevada exatidão, na ordem dos centímetros, tais como realidade aumentada, realidade virtual, jogos ou guias virtuais. Utilizou-se uma infraestrutura de faróis de baixo custo suportada por uma rede de sensores sem fios (RSSF). Para manter a infraestrutura síncrona, foi desenvolvido um protocolo de sincronização e sintonização automática, (Automatic Time Synchronization and Syntonization - ATSS) que garante um desvio padrão do erro de offset abaixo de 1.25 μs. Cada smartphone efectua medidas MT-TDoA que posteriormente são utilizadas pelo algoritmo de localização hiperbólica. As estimativas de posição resultantes são estáveis e precisas, com um erro médio absoluto menor do que 10 cm em 95% dos casos e um desvio padrão médio de 2.2 cm, para um período de atualização de posição de 350 ms

    Sistema de localização com ultrassons

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaEsta tese apresenta um sistema de localização baseado exclusivamente em ultrassons, não necessitando de recorrer a qualquer outra tecnologia. Este sistema de localização foi concebido para poder operar em ambientes onde qualquer outra tecnologia não pode ser utilizada ou o seu uso está condicionado, como são exemplo aplicações subaquáticas ou ambientes hospitalares. O sistema de localização proposto faz uso de uma rede de faróis fixos permitindo que estações móveis se localizem. Devido à necessidade de transmissão de dados e medição de distâncias foi desenvolvido um pulso de ultrassons robusto a ecos que permite realizar ambas as tarefas com sucesso. O sistema de localização permite que as estações móveis se localizem escutando apenas a informação em pulsos de ultrassons enviados pelos faróis usando para tal um algoritmo baseado em diferenças de tempo de chegada. Desta forma a privacidade dos utilizadores é garantida e o sistema torna-se completamente independente do número de utilizadores. Por forma a facilitar a implementação da rede de faróis apenas será necessário determinar manualmente a posição de alguns dos faróis, designados por faróis âncora. Estes irão permitir que os restantes faróis, completamente autónomos, se possam localizar através de um algoritmo iterativo de localização baseado na minimização de uma função de custo. Para que este sistema possa funcionar como previsto será necessário que os faróis possam sincronizar os seus relógios e medir a distância entre eles. Para tal, esta tese propõe um protocolo de sincronização de relógio que permite também obter as medidas de distância entre os faróis trocando somente três mensagens de ultrassons. Adicionalmente, o sistema de localização permite que faróis danificados possam ser substituídos sem comprometer a operabilidade da rede reduzindo a complexidade na manutenção. Para além do mencionado, foi igualmente implementado um simulador de ultrassons para ambientes fechados, o qual provou ser bastante preciso e uma ferramenta de elevado valor para simular o comportamento do sistema de localização sobre condições controladas.This thesis presents a location system based exclusively on ultrasonic signals, without using any other technology. This location system was designed to operate in environments where the use of other technologies is not possible or the use of them is limited, such as underwater applications or hospital environments. The proposed location system uses a network of fixed beacons allowing the mobile stations to locate. Due to the necessity of data transmission and distance measurement an ultrasonic pulse robust to echoes was developed that allows to perform both tasks with success. The location system allows that mobiles locate themselves only listening to the information in the ultrasonic pulse sent by the beacons, for that an algorithm based on time difference of arrival is used. Therefore, the user privacy is guaranteed as well as the complete independence of the system number of users. To simplify the network implementation it is only necessary to manually define the position of some of the beacons, called anchor beacons. These will allow the remaining autonomous beacons to locate themselves by an iterative location algorithm based on a local cost function minimization. For this system to work properly the beacons must synchronize their clocks and measure the distance between them. Therefore, this thesis proposes a clock synchronization protocol which also allows to measure the distance between the beacons by exchanging only three ultrasonic messages. Additionally, the location system permits that damaged beacons may be replaced without compromising the network operability reducing the maintenance complexity. Additionally, a simplified ultrasonic simulator for indoor environments was developed, which has proved to be very accurate and a valuable tool to simulate the location system behavior under controlled conditions

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    Diseño de un simulador para sistemas de localización acústicos subacuáticos basados en secuencias de espectro ensanchado

    Get PDF
    Las señales acústicas en entornos subacuáticos cada vez tienen más relevancia debido a la necesidad de localizar vehículos submarinos o redes de sensores en el fondo marino. Para desplegar cualquier sistema de posicionamiento, el primer paso es la realización de pruebas simuladas con objeto de conocer las necesidades y restricciones impuestas por el medio. Además, debido a la dificultad y al coste asociado a desplegar demostradores prácticos en entornos subacuáticos, resulta de especial utilidad disponer de modelos de simulación que permitan generar un amplio banco de pruebas, como paso previo a la realización de pruebas experimentales. La herramienta de simulación presentada en este trabajo permite el diseño de las señales emitidas por los transductores, la configuración de la emisión, la batimetría y los diferentes parámetros que caracterizan el entorno, así como la selección y ubicación del hidrófono receptor. Se utilizará un modelo de trazado de rayos para la simulación de la propagación de señales acústicas y se mostrarán los resultados en diferentes etapas del procesamiento: banda base, señal modulada, señal recibida y estimación de la posición.Acoustic signals for positioning systems in underwater environments have become particularly relevant, due to the need of locating underwater vehicles and sensor networks. To successfully deploy these positioning systems, a first common step is to carry out simulated studies to determine the requirements and restrictions imposed by the environment. Furthermore, since the underwater environment involves an additional difficulty and cost when deploying prototypes, it is particularly useful to have computer models available that allow the generation of a wide range of tests, as a previous step to the implementation of any experimental test. For that purpose, this work focuses on the design of a simulation tool for researchers in the field of acoustic localization systems. The proposed tool deals with key parameters and features, such as the generation of the signals emitted by the acoustic transducers (encoding techniques, modulations schemes, etc.), the frequency response and location of emitters and hydrophones, the bathymetry of the seabed, and the channel effects on the ultrasonic signal propagation. A ray tracing model has been applied to model the propagation of acoustic signals. The simulation tool has been successfully validated as a useful asset for this type of positioning systems, by means of a complete set of tests, considering different configurations and situations, and also analyzing the signals involved at different processing stages: baseband, modulated signals, received signals and final estimated positions.Máster Universitario en Ingeniería Industrial (M141

    Trajectory optimization using learning from demonstration with meta-heuristic grey wolf algorithm

    Get PDF
    Nowadays, most robotic systems perform their tasks in an environment that is generally known. Thus, robot’s trajectory can be planned in advance depending on a given task. However, as a part of modern manufacturing systems which are faced with the requirements to produce high product variety, mobile robots should be flexible to adapt to changing and diverse environments and needs. In such scenarios, a modification of the task or a change in the environment, forces the operator to modify robot’s trajectory. Such modification is usually expensive and time-consuming, as experienced engineers must be involved to program robot’s movements. The current paper presents a solution to this problem by simplifying the process of teaching the robot a new trajectory. The proposed method generates a trajectory based on an initial raw demonstration of its shape. The new trajectory is generated in such a way that the errors between the actual and target end positions and orientations of the robot are minimized. To minimize those errors, the grey wolf optimization (GWO) algorithm is applied. The proposed approach is demonstrated for a two-wheeled mobile robot. Simulation and experimental results confirm high accuracy of generated trajectories
    corecore