5,229 research outputs found

    A habituation account of change detection in same/different judgments

    Get PDF
    We investigated the basis of change detection in a short-term priming task. In two experiments, participants were asked to indicate whether or not a target word was the same as a previously presented cue. Data from an experiment measuring magnetoencephalography failed to find different patterns for “same” and “different” responses, consistent with the claim that both arise from a common neural source, with response magnitude defining the difference between immediate novelty versus familiarity. In a behavioral experiment, we tested and confirmed the predictions of a habituation account of these judgments by comparing conditions in which the target, the cue, or neither was primed by its presentation in the previous trial. As predicted, cue-primed trials had faster response times, and target-primed trials had slower response times relative to the neither-primed baseline. These results were obtained irrespective of response repetition and stimulus–response contingencies. The behavioral and brain activity data support the view that detection of change drives performance in these tasks and that the underlying mechanism is neuronal habituation

    Explicit processing of verbal and spatial features during letter-location binding modulates oscillatory activity of a fronto-parietal network.

    Get PDF
    The present study investigated the binding of verbal and spatial features in immediate memory. In a recent study, we demonstrated incidental and asymmetrical letter-location binding effects when participants attended to letter features (but not when they attended to location features) that were associated with greater oscillatory activity over prefrontal and posterior regions during the retention period. We were interested to investigate whether the patterns of brain activity associated with the incidental binding of letters and locations observed when only the verbal feature is attended differ from those reflecting the binding resulting from the controlled/explicit processing of both verbal and spatial features. To achieve this, neural activity was recorded using magnetoencephalography (MEG) while participants performed two working memory tasks. Both tasks were identical in terms of their perceptual characteristics and only differed with respect to the task instructions. One of the tasks required participants to process both letters and locations. In the other, participants were instructed to memorize only the letters, regardless of their location. Time–frequency representation of MEG data based on the wavelet transform of the signals was calculated on a single trial basis during the maintenance period of both tasks. Critically, despite equivalent behavioural binding effects in both tasks, single and dual feature encoding relied on different neuroanatomical and neural oscillatory correlates. We propose that enhanced activation of an anterior–posterior dorsal network observed in the task requiring the processing of both features reflects the necessity for allocating greater resources to intentionally process verbal and spatial features in this task

    A layered abduction model of perception: Integrating bottom-up and top-down processing in a multi-sense agent

    Get PDF
    A layered-abduction model of perception is presented which unifies bottom-up and top-down processing in a single logical and information-processing framework. The process of interpreting the input from each sense is broken down into discrete layers of interpretation, where at each layer a best explanation hypothesis is formed of the data presented by the layer or layers below, with the help of information available laterally and from above. The formation of this hypothesis is treated as a problem of abductive inference, similar to diagnosis and theory formation. Thus this model brings a knowledge-based problem-solving approach to the analysis of perception, treating perception as a kind of compiled cognition. The bottom-up passing of information from layer to layer defines channels of information flow, which separate and converge in a specific way for any specific sense modality. Multi-modal perception occurs where channels converge from more than one sense. This model has not yet been implemented, though it is based on systems which have been successful in medical and mechanical diagnosis and medical test interpretation

    Semantic Bimodal Presentation Differentially Slows Working Memory Retrieval

    Get PDF
    Although evidence has shown that working memory (WM) can be differentially affected by the multisensory congruency of different visual and auditory stimuli, it remains unclear whether different multisensory congruency about concrete and abstract words could impact further WM retrieval. By manipulating the attention focus toward different matching conditions of visual and auditory word characteristics in a 2-back paradigm, the present study revealed that for the characteristically incongruent condition under the auditory retrieval condition, the response to abstract words was faster than that to concrete words, indicating that auditory abstract words are not affected by visual representation, while auditory concrete words are. Alternatively, for concrete words under the visual retrieval condition, WM retrieval was faster in the characteristically incongruent condition than in the characteristically congruent condition, indicating that visual representation formed by auditory concrete words may interfere with WM retrieval of visual concrete words. The present findings demonstrated that concrete words in multisensory conditions may be too aggressively encoded with other visual representations, which would inadvertently slow WM retrieval. However, abstract words seem to suppress interference better, showing better WM performance than concrete words in the multisensory condition

    Attentional modulation of orthographic neighborhood effects during reading: Evidence from event-related brain potentials in a psychological refractory period paradigm

    Get PDF
    It is often assumed that word reading proceeds automatically. Here, we tested this assumption by recording event-related potentials during a psychological refractory period (PRP) paradigm, requiring lexical decisions about written words. Specifically, we selected words differing in their orthographic neighborhood size–the number of words that can be obtained from a target by exchanging a single letter–and investigated how influences of this variable depend on the availability of central attention. As expected, when attentional resources for lexical decisions were unconstrained, words with many orthographic neighbors elicited larger N400 amplitudes than those with few neighbors. However, under conditions of high temporal overlap with a high priority primary task, the N400 effect was not statistically different from zero. This finding indicates strong attentional influences on processes sensitive to orthographic neighbors during word reading, providing novel evidence against the full automaticity of processes involved in word reading. Furthermore, in conjunction with the observation of an underadditive interaction between stimulus onset asynchrony (SOA) and orthographic neighborhood size in lexical decision performance, commonly taken to indicate automaticity, our results raise issues concerning the standard logic of cognitive slack in the PRP paradigm

    Multi-Dimensional Memory Frames and Action Generation in the MHP/RT Cognitive Architecture

    Get PDF
    AbstractThe main theme of this paper is to provide a cognitive architecture, MHP/RT (Model Human Processor with Realtime Constraints), that is appropriate for describing the idea, “The agent would not be getting an informational input or a reinforcement, but the inputs would be better described as perturbations on a self-organizing complex systems”, as stated in the call for the workshop, Enaction, Complex Systems and Cognitive Architectures. MHP/RT describes a cyclic process of action selection and memorization while one lives in the world, and the memory is gradually structured as multi-dimensional frames as one interacts with the environment. Behavioral processing constraints are imposed by conscious and unconscious processes, and behavior must be synchronized with the ever-changing external and internal environments. This paper provides a brief explanation of MHP/RT and multi-dimensional memory frames, followed by how memory is structured as one develops

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    On the mechanism of response latencies in auditory nerve fibers

    Get PDF
    Despite the structural differences of the middle and inner ears, the latency pattern in auditory nerve fibers to an identical sound has been found similar across numerous species. Studies have shown the similarity in remarkable species with distinct cochleae or even without a basilar membrane. This stimulus-, neuron-, and species- independent similarity of latency cannot be simply explained by the concept of cochlear traveling waves that is generally accepted as the main cause of the neural latency pattern. An original concept of Fourier pattern is defined, intended to characterize a feature of temporal processing—specifically phase encoding—that is not readily apparent in more conventional analyses. The pattern is created by marking the first amplitude maximum for each sinusoid component of the stimulus, to encode phase information. The hypothesis is that the hearing organ serves as a running analyzer whose output reflects synchronization of auditory neural activity consistent with the Fourier pattern. A combined research of experimental, correlational and meta-analysis approaches is used to test the hypothesis. Manipulations included phase encoding and stimuli to test their effects on the predicted latency pattern. Animal studies in the literature using the same stimulus were then compared to determine the degree of relationship. The results show that each marking accounts for a large percentage of a corresponding peak latency in the peristimulus-time histogram. For each of the stimuli considered, the latency predicted by the Fourier pattern is highly correlated with the observed latency in the auditory nerve fiber of representative species. The results suggest that the hearing organ analyzes not only amplitude spectrum but also phase information in Fourier analysis, to distribute the specific spikes among auditory nerve fibers and within a single unit. This phase-encoding mechanism in Fourier analysis is proposed to be the common mechanism that, in the face of species differences in peripheral auditory hardware, accounts for the considerable similarities across species in their latency-by-frequency functions, in turn assuring optimal phase encoding across species. Also, the mechanism has the potential to improve phase encoding of cochlear implants
    corecore