699 research outputs found

    Getting routers out of the core: Building an optical wide area network with "multipaths"

    Full text link
    We propose an all-optical networking solution for a wide area network (WAN) based on the notion of multipoint-to-multipoint lightpaths that, for short, we call "multipaths". A multipath concentrates the traffic of a group of source nodes on a wavelength channel using an adapted MAC protocol and multicasts this traffic to a group of destination nodes that extract their own data from the confluent stream. The proposed network can be built using existing components and appears less complex and more efficient in terms of energy consumption than alternatives like OPS and OBS. The paper presents the multipath architecture and compares its energy consumption to that of a classical router-based ISP network. A flow-aware dynamic bandwidth allocation algorithm is proposed and shown to have excellent performance in terms of throughput and delay

    Crossroads --- A Time-Sensitive Autonomous Intersection Management Technique

    Get PDF
    abstract: For autonomous vehicles, intelligent autonomous intersection management will be required for safe and efficient operation. In order to achieve safe operation despite uncertainties in vehicle trajectory, intersection management techniques must consider a safety buffer around the vehicles. For truly safe operation, an extra buffer space should be added to account for the network and computational delay caused by communication with the Intersection Manager (IM). However, modeling the worst-case computation and network delay as additional buffer around the vehicle degrades the throughput of the intersection. To avoid this problem, AIM, a popular state-of-the-art IM, adopts a query-based approach in which the vehicle requests to enter at a certain arrival time dictated by its current velocity and distance to the intersection, and the IM replies yes/no. Although this solution does not degrade the position uncertainty, it ultimately results in poor intersection throughput. We present Crossroads, a time-sensitive programming method to program the interface of a vehicle and the IM. Without requiring additional buffer to account for the effect of network and computational delay, Crossroads enables efficient intersection management. Test results on a 1/10 scale model of intersection using TRAXXAS RC cars demonstrates that our Crossroads approach obviates the need for large buffers to accommodate for the network and computation delay, and can reduce the average wait time for the vehicles at a single-lane intersection by 24%. To compare Crossroads with previous approaches, we perform extensive Matlab simulations, and find that Crossroads achieves on average 1.62X higher throughput than a simple VT-IM with extra safety buffer, and 1.36X better than AIM.Dissertation/ThesisMasters Thesis Engineering 201

    Demystifying Wireless Technologies: Navigating Through The Wireless Technology Maze

    Get PDF
    A significant part of the growth in consumer-to-business electronic commerce is likely to originate from the increasing numbers of mobile computing devices and smart telephone devices. Most of the data from mobile computers will be carried over by emerging wireless networks. Many wireless technologies and standards are now available. As a result, it is becoming increasingly difficult for non-domain experts like managers, to sort through the maze of wireless technologies and standards to make business decisions involving these technologies. This article surveys existing and emerging wireless technologies and uses the Open System Interconnect (OSI) framework to organize the wireless landscape. The survey provides a quick reference to the entire spectrum of wireless technologies in use today

    Performance Bottlenecks in Digital Movie Systems

    Get PDF
    Digital movie systems offer great perspectives for multimedia applications. But the large amounts of data involved and the demand for isochronous transmission and playback are also great challenges for the designers of a new generation of file systems, database systems, operating systems, window systems, video encoder/decoder and networks. Today's research prototypes of digital movie systems suffer from severe performance bottlenecks, resulting in small movie windows, low frame rates or bad image quality (or all of these!). We consider the performance problem to be the most important problem with digital movie systems, preventing their widespread use today. In this paper we address performance issues of digital movie systems from a practical perspective. We report on performance experience gained with the XMovie system and new algorithms and protocols to overcome some of these bottlenecks
    • 

    corecore