4,514 research outputs found

    Switch-Level Model and Simulator for MOS Digital Systems

    Get PDF
    The switch-level model describes the logical behavior of digital systems implemented in metal oxide semiconductor (MOS) technology. In this model a network consists of a set of nodes connected by transistor "switches" with each node having a state 0, 1, or X (for invalid or uninitialized), and each transistor having a state "open", "closed", or "indeterminate". Many characteristics of 140S circuits can be modeled accurately, including: ratioed, complementary, and precharged logic-, dynamic and static storage; (bidirectional) pass transistors; busses; charge sharing; and sneak pa ths. In this paper we present a formal development of the switch-level model starting from a description of circuit behavior in terms of switch graphs. Then we describe an algorithm for a logic simulator based on the switch-level model which computes the new state of the network by solving a set of equations in a simple, discrete algebra. This algorithm has been implemented in the simulator MOSSIM II and has been used to simulate circuits containing over 10,000 transistors. By developing a formal theory of MOS logic circuits, we have achieved a greater degree of generality and accuracy than is found in other logic simulators for MOS

    A new nonlinear time-domain op-amp macromodel using threshold functions and digitally controlled network elements

    Get PDF
    A general-purpose nonlinear macromodel for the time-domain simulation of integrated circuit operational amplifiers (op amps), either bipolar or MOS, is presented. Three main differences exist between the macromodel and those previously reported in the literature for the time domain. First, all the op-amp nonlinearities are simulated using threshold elements and digital components, thus making them well suited for a mixed electrical/logical simulator. Secondly, the macromodel exhibits a superior performance in those cases where the op amp is driven by a large signal. Finally, the macromodel is advantageous in terms of CPU time. Several examples are included illustrating all of these advantages. The main application of this macromodel is for the accurate simulation of the analog part of a combined analog/digital integrated circui

    A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor

    Get PDF
    The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing

    The Rolf of Test Chips in Coordinating Logic and Circuit Design and Layout Aids for VLSI

    Get PDF
    This paper emphasizes the need for multipurpose test chips and comprehensive procedures for use in supplying accurate input data to both logic and circuit simulators and chip layout aids. It is shown that the location of test structures within test chips is critical in obtaining representative data, because geometrical distortions introduced during the photomasking process can lead to significant intrachip parameter variations. In order to transfer test chip designs quickly, accurately, and economically, a commonly accepted portable chip layout notation and commonly accepted parametric tester language are needed. In order to measure test chips more accurately and more rapidly, parametric testers with improved architecture need to be developed in conjunction with innovative test structures with on-chip signal conditioning

    Transistor-Level Synthesis of Pipeline Analog-to-Digital Converters Using a Design-Space Reduction Algorithm

    Get PDF
    A novel transistor-level synthesis procedure for pipeline ADCs is presented. This procedure is able to directly map high-level converter specifications onto transistor sizes and biasing conditions. It is based on the combination of behavioral models for performance evaluation, optimization routines to minimize the power and area consumption of the circuit solution, and an algorithm to efficiently constraint the converter design space. This algorithm precludes the cost of lengthy bottom-up verifications and speeds up the synthesis task. The approach is herein demonstrated via the design of a 0.13 μm CMOS 10 bits@60 MS/s pipeline ADC with energy consumption per conversion of only 0.54 pJ@1 MHz, making it one of the most energy-efficient 10-bit video-rate pipeline ADCs reported to date. The computational cost of this design is of only 25 min of CPU time, and includes the evaluation of 13 different pipeline architectures potentially feasible for the targeted specifications. The optimum design derived from the synthesis procedure has been fine tuned to support PVT variations, laid out together with other auxiliary blocks, and fabricated. The experimental results show a power consumption of 23 [email protected] V and an effective resolution of 9.47-bit@1 MHz. Bearing in mind that no specific power reduction strategy has been applied; the mentioned results confirm the reliability of the proposed approach.Ministerio de Ciencia e Innovación TEC2009-08447Junta de Andalucía TIC-0281

    Simulation-based high-level synthesis of Nyquist-rate data converters using MATLAB/SIMULINK

    Get PDF
    This paper presents a toolbox for the simulation, optimization and high-level synthesis of Nyquist-rate Analog-to-Digital (A/D) and Digital-to-Analog (D/A) Converters in MATLAB®. The embedded simulator uses SIMULINK® C-coded S-functions to model all required subcircuits including their main error mechanisms. This approach allows to drastically speed up the simulation CPU-time up to 2 orders of magnitude as compared with previous approaches - based on the use of SIMULINK® elementary blocks. Moreover, S-functions are more suitable for implementing a more detailed description of the circuit. For all subcircuits, the accuracy of the behavioral models has been verified by electrical simulation using HSPICE. For synthesis purposes, the simulator is used for performance evaluation and combined with an hybrid optimizer for design parameter selection. The optimizer combines adaptive statistical optimization algorithm inspired in simulated annealing with a design-oriented formulation of the cost function. It has been integrated in the MATLAB/SIMULINK® platform by using the MATLAB® engine library, so that the optimization core runs in background while MATLAB® acts as a computation engine. The implementation on the MATLAB® platform brings numerous advantages in terms of signal processing, high flexibility for tool expansion and simulation with other electronic subsystems. Additionally, the presented toolbox comprises a friendly graphical user interface to allow the designer to browse through all steps of the simulation, synthesis and post-processing of results. In order to illustrate the capabilities of the toolbox, a 0.13)im CMOS 12bit@80MS/s analog front-end for broadband power line communications, made up of a pipeline ADC and a current steering DAC, is synthesized and high-level sized. Different experiments show the effectiveness of the proposed methodology.Ministerio de Ciencia y Tecnología TIC2003-02355RAICONI

    Inertial and Degradation Delay Model for CMOS Logic Gates

    Get PDF
    The authors present the Inertial and Degradation Delay Model (IDDM) for CMOS digital simulation. The model combines the Degradation Delay Model presented in previous papers with a new algorithm to handle the inertial effect, and is able to take account of the propagation and filtering of arbitrarily narrow pulses (glitches, etc.). The model clearly overcomes the limitations of conventional approaches

    Oscillation-based DFT for Second-order Bandpass OTA-C Filters

    Get PDF
    This document is the Accepted Manuscript version. Under embargo until 6 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s00034-017-0648-9.This paper describes a design for testability technique for second-order bandpass operational transconductance amplifier and capacitor filters using an oscillation-based test topology. The oscillation-based test structure is a vectorless output test strategy easily extendable to built-in self-test. The proposed methodology converts filter under test into a quadrature oscillator using very simple techniques and measures the output frequency. Using feedback loops with nonlinear block, the filter-to-oscillator conversion techniques easily convert the bandpass OTA-C filter into an oscillator. With a minimum number of extra components, the proposed scheme requires a negligible area overhead. The validity of the proposed method has been verified using comparison between faulty and fault-free simulation results of Tow-Thomas and KHN OTA-C filters. Simulation results in 0.25μm CMOS technology show that the proposed oscillation-based test strategy for OTA-C filters is suitable for catastrophic and parametric faults testing and also effective in detecting single and multiple faults with high fault coverage.Peer reviewedFinal Accepted Versio

    The mission oriented terminal area simulation facility

    Get PDF
    The Mission Oriented Terminal Area Simulation (MOTAS) was developed to provide an ATC environment in which flight management and flight operations research studies can be conducted with a high degree of realism. This facility provides a flexible and comprehensive simulation of the airborne, ground-based and communication aspects of the airport terminal area environment. Major elements of the simulation are: an airport terminal area environment model, two air traffic controller stations, several aircraft models and simulator cockpits, four pseudo pilot stations, and a realistic air-ground communications network. MOTAS has been used for one study with the DC-9 simulator and a series of data link studies are planned in the near future
    corecore