2,862 research outputs found

    Investigating Open Issues in Swarm Intelligence for Mitigating Security Threats in MANET

    Get PDF
    The area of Mobile Adhoc Network (MANET) has being a demanded topic of research for more than a decade because of its attractive communication features associated with various issues. This paper primarily discusses on the security issues, which has been still unsolved after abundant research work. The paper basically stresses on the potential features of Swarm Intelligence (SI) and its associated techniques to mitigate the security issues. Majority of the previous researches based on SI has used Ant Colony Optimization (ACO) or Particle Swarm Optimization (PSO) extensively. Elaborated discussion on SI with respect to trust management, authentication, and attack models are made with support of some of the recent studies done in same area. The paper finally concludes by discussing the open issues and problem identification of the review

    Ant-based evidence distribution with periodic broadcast in attacked wireless network

    Get PDF
    In order to establish trust among nodes in large wireless networks, the trust certicates need to be distributed and be readily accessible. However, even so, searching for trust certicates will still become highly cost and delay especially when wireless network is suering CTS jamming attack. We believe the individual solution can lead us to solve this combination problems in the future. Therefore, in this work, we investigate the delay and cost of searching a distributed certicate and the adverse eects of fabiricated control packet attacks on channel throughput and delivery ratio respectively, and propose two techniques that can improve the eciency of searching for such certicates in the network and mitigate the CTS jamming attack's eect. Evidence Distribution based on Periodic Broadcast (EDPB) is the rst solution we presented to help node to quickly locate trust certicates in a large wireless sensor network. In this solution, we not only take advantages from swarm intelligence alogrithm, but also allow nodes that carrying certicates to periodically announce their existence. Such announcements, together with a swarm-intelligence pheromone pdate procedure, will leave traces on the nodes to lead query packets toward the certicate nodes. We then investigate the salient features of this schema and evaluate its performance in both static and mobile networks. This schema can also be used for other essential information dissemination in mobile ad hoc networks. The second technqiue, address inspection schema (AIS) xes vulnerabilities exist in distribution coordinating function (DCF) dened in IEEE 802.11 standard so that each node has the ability to beat the impact of CTS jamming attack and furthermore, benets network throughput. We then perform ns-2 simulations to evaluate the benet of AIS

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime

    Trust And Energy-Aware Routing Protocol for Wireless Sensor Networks Based on Secure Routing

    Get PDF
    Wireless Sensor Network (WSN) is a network area that includes a large number of nodes and the ability of wireless transmission. WSNs are frequently employed for vital applications in which security and dependability are of utmost concern. The main objective of the proposed method is to design a WSN to maximize network longevity while minimizing power usage. In a WSN, trust management is employed to encourage node collaboration, which is crucial for achieving dependable transmission. In this research, a novel Trust and Energy Aware Routing Protocol (TEARP) in wireless sensors networks is proposed, which use blockchain technology to maintain the identity of the Sensor Nodes (SNs) and Aggregator Nodes (ANs). The proposed TEARP technique provides a thorough trust value for nodes based on their direct trust values and the filtering mechanisms generate the indirect trust values. Further, an enhanced threshold technique is employed to identify the most appropriate clustering heads based on dynamic changes in the extensive trust values and residual energy of the networks. Lastly, cluster heads should be routed in a secure manner using a Sand Cat Swarm Optimization Algorithm (SCSOA). The proposed method has been evaluated using specific parameters such as Network Lifetime, Residual Energy, Throughpu,t Packet Delivery Ratio, and Detection Accuracy respectively. The proposed TEARP method improves the network lifetime by 39.64%, 33.05%, and 27.16%, compared with Energy-efficient and Secure Routing (ESR), Multi-Objective nature-inspired algorithm based on Shuffled frog-leaping algorithm and Firefly Algorithm (MOSFA) , and Optimal Support Vector Machine (OSVM)

    A Study on Intrusion Detection System in Wireless Sensor Networks

    Get PDF
    The technology of Wireless Sensor Networks (WSNs) has become most significant in present day. WSNs are extensively used in applications like military, industry, health, smart homes and smart cities. All the applications of WSN require secure communication between the sensor nodes and the base station. Adversary compromises at the sensor nodes to introduce different attacks into WSN. Hence, suitable Intrusion Detection System (IDS) is essential in WSN to defend against the security attack. IDS approaches for WSN are classified based on the mechanism used to detect the attacks. In this paper, we present the taxonomy of security attacks, different IDS mechanisms for detecting attacks and performance metrics used to assess the IDS algorithm for WSNs. Future research directions on IDS in WSN are also discussed
    • …
    corecore