25,121 research outputs found

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    NEGOSEIO: framework for the sustainability of model-oriented enterprise interoperability

    Get PDF
    Dissertation to obtain the degree of Doctor of Philosophy in Electrical and Computer Engineering(Industrial Information Systems)This dissertation tackles the problematic of Enterprise Interoperability in the current globally connected world. The evolution of the Information and Communication Technologies has endorsed the establishment of fast, secure and robust data exchanges, promoting the development of networked solutions. This allowed the specialisation of enterprises (particularly SMEs) and favoured the development of complex and heterogeneous provider systems. Enterprises are abandoning their self-centrism and working together on the development of more complete solutions. Entire business solutions are built integrating several enterprises (e.g., in supply chains, enterprise nesting) towards a common objective. Additionally, technologies, platforms, trends, standards and regulations keep evolving and demanding enterprises compliance. This evolution needs to be continuous, and is naturally followed by a constant update of each networked enterprise’s interfaces, assets, methods and processes. This unstable environment of perpetual change is causing major concerns in both SMEs and customers as the current interoperability grounds are frail, easily leading to periods of downtime, where business is not possible. The pressure to restore interoperability rapidly often leads to patching and to the adoption of immature solutions, contributing to deteriorate even more the interoperable environment. This dissertation proposes the adoption of NEGOSEIO, a framework that tackles interoperability issues by developing strong model-based knowledge assets and promoting continuous improvement and adaptation for increasing the sustainability of interoperability on enterprise systems. It presents the research motivations and the developed framework’s main blocks, which include model-based knowledge management, collaboration service-oriented architectures implemented over a cloud-based solution, and focusing particularly on its negotiation core mechanism to handle inconsistencies and solutions for the detected interoperability problems. It concludes by validating the research and the proposed framework, presenting its application in a real business case of aerospace mission design on the European Space Agency (ESA).FP7 ENSEMBLE, UNITE, MSEE and IMAGINE project

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    An Internet of Things Resource for Rehabilitation

    Get PDF

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin
    corecore