8,223 research outputs found

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    AI-powered edge computing evolution for beyond 5G communication networks

    Get PDF
    Edge computing is a key enabling technology that is expected to play a crucial role in beyond 5G (B5G) and 6G communication networks. By bringing computation closer to where the data is generated, and leveraging Artificial Intelligence (AI) capabilities for advanced automation and orchestration, edge computing can enable a wide range of emerging applications with extreme requirements in terms of latency and computation, across multiple vertical domains. In this context, this paper first discusses the key technological challenges for the seamless integration of edge computing within B5G/6G and then presents a roadmap for the edge computing evolution, proposing a novel design approach for an open, intelligent, trustworthy, and distributed edge architecture.VERGE has received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union’s Horizon Europe research and innovation programme under Grant Agreement No 101096034.Peer ReviewedPostprint (author's final draft

    Internet of things and industrial applications for precision machining

    Get PDF
    The Internet of Things (IoT) can be regarded as an attempt to bring together the physical and the digital world by using devices for seamlessly exchanging and processing information that can be used anywhere, anytime. For industrial automation and manufacturing, the Industrial Internet of Things (IIoT) is regarded as the next step of industrial revolution that promises a step-change in productivity and operational efficiency. Precision machining is a field that has received a lot of research interest as it deals with phenomena and underlying mechanisms that are very complex and highly interacting. As the requirements and demand for products of high quality and tolerances that must be produced with shorter lead times are increasing, innovative approaches and methodologies need to be developed to compensate and IIoT offers an appropriate platform. This paper aims to present an overview of IIoT, investigate potential industrial applications for precision machining and predict future trends

    Investigating the Effects of Network Dynamics on Quality of Delivery Prediction and Monitoring for Video Delivery Networks

    Get PDF
    Video streaming over the Internet requires an optimized delivery system given the advances in network architecture, for example, Software Defined Networks. Machine Learning (ML) models have been deployed in an attempt to predict the quality of the video streams. Some of these efforts have considered the prediction of Quality of Delivery (QoD) metrics of the video stream in an effort to measure the quality of the video stream from the network perspective. In most cases, these models have either treated the ML algorithms as black-boxes or failed to capture the network dynamics of the associated video streams. This PhD investigates the effects of network dynamics in QoD prediction using ML techniques. The hypothesis that this thesis investigates is that ML techniques that model the underlying network dynamics achieve accurate QoD and video quality predictions and measurements. The thesis results demonstrate that the proposed techniques offer performance gains over approaches that fail to consider network dynamics. This thesis results highlight that adopting the correct model by modelling the dynamics of the network infrastructure is crucial to the accuracy of the ML predictions. These results are significant as they demonstrate that improved performance is achieved at no additional computational or storage cost. These techniques can help the network manager, data center operatives and video service providers take proactive and corrective actions for improved network efficiency and effectiveness

    Split Federated Learning for 6G Enabled-Networks: Requirements, Challenges and Future Directions

    Full text link
    Sixth-generation (6G) networks anticipate intelligently supporting a wide range of smart services and innovative applications. Such a context urges a heavy usage of Machine Learning (ML) techniques, particularly Deep Learning (DL), to foster innovation and ease the deployment of intelligent network functions/operations, which are able to fulfill the various requirements of the envisioned 6G services. Specifically, collaborative ML/DL consists of deploying a set of distributed agents that collaboratively train learning models without sharing their data, thus improving data privacy and reducing the time/communication overhead. This work provides a comprehensive study on how collaborative learning can be effectively deployed over 6G wireless networks. In particular, our study focuses on Split Federated Learning (SFL), a technique recently emerged promising better performance compared with existing collaborative learning approaches. We first provide an overview of three emerging collaborative learning paradigms, including federated learning, split learning, and split federated learning, as well as of 6G networks along with their main vision and timeline of key developments. We then highlight the need for split federated learning towards the upcoming 6G networks in every aspect, including 6G technologies (e.g., intelligent physical layer, intelligent edge computing, zero-touch network management, intelligent resource management) and 6G use cases (e.g., smart grid 2.0, Industry 5.0, connected and autonomous systems). Furthermore, we review existing datasets along with frameworks that can help in implementing SFL for 6G networks. We finally identify key technical challenges, open issues, and future research directions related to SFL-enabled 6G networks
    • …
    corecore