69,716 research outputs found

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Social-aware Forwarding in Opportunistic Wireless Networks: Content Awareness or Obliviousness?

    Full text link
    With the current host-based Internet architecture, networking faces limitations in dynamic scenarios, due mostly to host mobility. The ICN paradigm mitigates such problems by releasing the need to have an end-to-end transport session established during the life time of the data transfer. Moreover, the ICN concept solves the mismatch between the Internet architecture and the way users would like to use it: currently a user needs to know the topological location of the hosts involved in the communication when he/she just wants to get the data, independently of its location. Most of the research efforts aim to come up with a stable ICN architecture in fixed networks, with few examples in ad-hoc and vehicular networks. However, the Internet is becoming more pervasive with powerful personal mobile devices that allow users to form dynamic networks in which content may be exchanged at all times and with low cost. Such pervasive wireless networks suffer with different levels of disruption given user mobility, physical obstacles, lack of cooperation, intermittent connectivity, among others. This paper discusses the combination of content knowledge (e.g., type and interested parties) and social awareness within opportunistic networking as to drive the deployment of ICN solutions in disruptive networking scenarios. With this goal in mind, we go over few examples of social-aware content-based opportunistic networking proposals that consider social awareness to allow content dissemination independently of the level of network disruption. To show how much content knowledge can improve social-based solutions, we illustrate by means of simulation some content-oblivious/oriented proposals in scenarios based on synthetic mobility patterns and real human traces.Comment: 7 pages, 6 figure

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Content Delivery Latency of Caching Strategies for Information-Centric IoT

    Full text link
    In-network caching is a central aspect of Information-Centric Networking (ICN). It enables the rapid distribution of content across the network, alleviating strain on content producers and reducing content delivery latencies. ICN has emerged as a promising candidate for use in the Internet of Things (IoT). However, IoT devices operate under severe constraints, most notably limited memory. This means that nodes cannot indiscriminately cache all content; instead, there is a need for a caching strategy that decides what content to cache. Furthermore, many applications in the IoT space are timesensitive; therefore, finding a caching strategy that minimises the latency between content request and delivery is desirable. In this paper, we evaluate a number of ICN caching strategies in regards to latency and hop count reduction using IoT devices in a physical testbed. We find that the topology of the network, and thus the routing algorithm used to generate forwarding information, has a significant impact on the performance of a given caching strategy. To the best of our knowledge, this is the first study that focuses on latency effects in ICN-IoT caching while using real IoT hardware, and the first to explicitly discuss the link between routing algorithm, network topology, and caching effects.Comment: 10 pages, 9 figures, journal pape

    Mediator-assisted multi-source routing in information-centric networks

    Get PDF
    Among the new communication paradigms recently proposed, information-centric networking (ICN) is able to natively support content awareness at the network layer shifting the focus from hosts (as in traditional IP networks) to information objects. In this paper, we exploit the intrinsic content-awareness ICN features to design a novel multi-source routing mechanism. It involves a new network entity, the ICN mediator, responsible for locating and delivering the requested information objects that are chunked and stored at different locations. Our approach imposes very limited signalling overhead, especially for large chunk size (MBytes). Simulations show significant latency reduction compared to traditional routing approaches
    • …
    corecore