5,151 research outputs found

    Two Gaps Make a High Temperature Superconductor?

    Full text link
    One of the keys to the high-temperature superconductivity puzzle is the identification of the energy scales associated with the emergence of a coherent condensate of superconducting electron pairs. These might provide a measure of the pairing strength and of the coherence of the superfluid, and ultimately reveal the nature of the elusive pairing mechanism in the superconducting cuprates. To this end, a great deal of effort has been devoted to investigating the connection between the superconducting transition temperature Tc and the normal-state pseudogap crossover temperature T*. Here we present a review of a large body of experimental data that suggests a coexisting two-gap scenario, i.e. superconducting gap and pseudogap, over the whole superconducting dome.Comment: Related material can be found at http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm

    From Molecules to the Masses : Visual Exploration, Analysis, and Communication of Human Physiology

    Get PDF
    Det overordnede målet med denne avhandlingen er tverrfaglig anvendelse av medisinske illustrasjons- og visualiseringsteknikker for å utforske, analysere og formidle aspekter ved fysiologi til publikum med ulik faglig nivå og bakgrunn. Fysiologi beskriver de biologiske prosessene som skjer i levende vesener over tid. Vitenskapen om fysiologi er kompleks, men samtidig kritisk for vår forståelse av hvordan levende organismer fungerer. Fysiologi dekker en stor bredde romlig-temporale skalaer og fordrer behovet for å kombinere og bygge bro mellom basalfagene (biologi, fysikk og kjemi) og medisin. De senere årene har det vært en eksplosjon av nye, avanserte eksperimentelle metoder for å detektere og karakterisere fysiologiske data. Volumet og kompleksiteten til fysiologiske data krever effektive strategier for visualisering for å komplementere dagens standard analyser. Hvilke tilnærminger som benyttes i visualiseringen må nøye balanseres og tilpasses formålet med bruken av dataene, enten dette er for å utforske dataene, analysere disse eller kommunisere og presentere dem. Arbeidet i denne avhandlingen bidrar med ny kunnskap innen teori, empiri, anvendelse og reproduserbarhet av visualiseringsmetoder innen fysiologi. Først i avhandlingen er en rapport som oppsummerer og utforsker dagens kunnskap om muligheter og utfordringer for visualisering innen fysiologi. Motivasjonen for arbeidet er behovet forskere innen visualiseringsfeltet, og forskere i ulike anvendelsesområder, har for en sammensatt oversikt over flerskala visualiseringsoppgaver og teknikker. Ved å bruke søk over et stort spekter av metodiske tilnærminger, er dette den første rapporten i sitt slag som kartlegger visualiseringsmulighetene innen fysiologi. I rapporten er faglitteraturen oppsummert slik at det skal være enkelt å gjøre oppslag innen ulike tema i rom-og-tid-skalaen, samtidig som litteraturen er delt inn i de tre høynivå visualiseringsoppgavene data utforsking, analyse og kommunikasjon. Dette danner et enkelt grunnlag for å navigere i litteraturen i feltet og slik danner rapporten et godt grunnlag for diskusjon og forskningsmuligheter innen feltet visualisering og fysiologi. Basert på arbeidet med rapporten var det særlig to områder som det er ønskelig for oss å fortsette å utforske: (1) utforskende analyse av mangefasetterte fysiologidata for ekspertbrukere, og (2) kommunikasjon av data til både eksperter og ikke-eksperter. Arbeidet vårt av mangefasetterte fysiologidata er oppsummert i to studier i avhandlingen. Hver studie omhandler prosesser som foregår på forskjellige romlig-temporale skalaer og inneholder konkrete eksempler på anvendelse av metodene vurdert av eksperter i feltet. I den første av de to studiene undersøkes konsentrasjonen av molekylære substanser (metabolitter) ut fra data innsamlet med magnetisk resonansspektroskopi (MRS), en avansert biokjemisk teknikk som brukes til å identifisere metabolske forbindelser i levende vev. Selv om MRS kan ha svært høy sensitivitet og spesifisitet i medisinske anvendelser, er analyseresultatene fra denne modaliteten abstrakte og vanskelige å forstå også for medisinskfaglige eksperter i feltet. Vår designstudie som undersøkte oppgavene og kravene til ekspertutforskende analyse av disse dataene førte til utviklingen av SpectraMosaic. Dette er en ny applikasjon som gjør det mulig for domeneeksperter å analysere konsentrasjonen av metabolitter normalisert for en hel kohort, eller etter prøveregion, individ, opptaksdato, eller status på hjernens aktivitetsnivå ved undersøkelsestidspunktet. I den andre studien foreslås en metode for å utføre utforskende analyser av flerdimensjonale fysiologiske data i motsatt ende av den romlig-temporale skalaen, nemlig på populasjonsnivå. En effektiv arbeidsflyt for utforskende dataanalyse må kritisk identifisere interessante mønstre og relasjoner, noe som blir stadig vanskeligere når dimensjonaliteten til dataene øker. Selv om dette delvis kan løses med eksisterende reduksjonsteknikker er det alltid en fare for at subtile mønstre kan gå tapt i reduksjonsprosessen. Isteden presenterer vi i studien DimLift, en iterativ dimensjonsreduksjonsteknikk som muliggjør brukeridentifikasjon av interessante mønstre og relasjoner som kan ligge subtilt i et datasett gjennom dimensjonale bunter. Nøkkelen til denne metoden er brukerens evne til å styre dimensjonalitetsreduksjonen slik at den følger brukerens egne undersøkelseslinjer. For videre å undersøke kommunikasjon til eksperter og ikke-eksperter, studeres i neste arbeid utformingen av visualiseringer for kommunikasjon til publikum med ulike nivåer av ekspertnivå. Det er naturlig å forvente at eksperter innen et emne kan ha ulike preferanser og kriterier for å vurdere en visuell kommunikasjon i forhold til et ikke-ekspertpublikum. Dette påvirker hvor effektivt et bilde kan benyttes til å formidle en gitt scenario. Med utgangspunkt i ulike teknikker innen biomedisinsk illustrasjon og visualisering, gjennomførte vi derfor en utforskende studie av kriteriene som publikum bruker når de evaluerer en biomedisinsk prosessvisualisering målrettet for kommunikasjon. Fra denne studien identifiserte vi muligheter for ytterligere konvergens av biomedisinsk illustrasjon og visualiseringsteknikker for mer målrettet visuell kommunikasjonsdesign. Særlig beskrives i større dybde utviklingen av semantisk konsistente retningslinjer for farging av molekylære scener. Hensikten med slike retningslinjer er å heve den vitenskapelige kompetansen til ikke-ekspertpublikum innen molekyler visualisering, som vil være spesielt relevant for kommunikasjon til befolkningen i forbindelse med folkehelseopplysning. All kode og empiriske funn utviklet i arbeidet med denne avhandlingen er åpen kildekode og tilgjengelig for gjenbruk av det vitenskapelige miljøet og offentligheten. Metodene og funnene presentert i denne avhandlingen danner et grunnlag for tverrfaglig biomedisinsk illustrasjon og visualiseringsforskning, og åpner flere muligheter for fortsatt arbeid med visualisering av fysiologiske prosesser.The overarching theme of this thesis is the cross-disciplinary application of medical illustration and visualization techniques to address challenges in exploring, analyzing, and communicating aspects of physiology to audiences with differing expertise. Describing the myriad biological processes occurring in living beings over time, the science of physiology is complex and critical to our understanding of how life works. It spans many spatio-temporal scales to combine and bridge the basic sciences (biology, physics, and chemistry) to medicine. Recent years have seen an explosion of new and finer-grained experimental and acquisition methods to characterize these data. The volume and complexity of these data necessitate effective visualizations to complement standard analysis practice. Visualization approaches must carefully consider and be adaptable to the user's main task, be it exploratory, analytical, or communication-oriented. This thesis contributes to the areas of theory, empirical findings, methods, applications, and research replicability in visualizing physiology. Our contributions open with a state-of-the-art report exploring the challenges and opportunities in visualization for physiology. This report is motivated by the need for visualization researchers, as well as researchers in various application domains, to have a centralized, multiscale overview of visualization tasks and techniques. Using a mixed-methods search approach, this is the first report of its kind to broadly survey the space of visualization for physiology. Our approach to organizing the literature in this report enables the lookup of topics of interest according to spatio-temporal scale. It further subdivides works according to any combination of three high-level visualization tasks: exploration, analysis, and communication. This provides an easily-navigable foundation for discussion and future research opportunities for audience- and task-appropriate visualization for physiology. From this report, we identify two key areas for continued research that begin narrowly and subsequently broaden in scope: (1) exploratory analysis of multifaceted physiology data for expert users, and (2) communication for experts and non-experts alike. Our investigation of multifaceted physiology data takes place over two studies. Each targets processes occurring at different spatio-temporal scales and includes a case study with experts to assess the applicability of our proposed method. At the molecular scale, we examine data from magnetic resonance spectroscopy (MRS), an advanced biochemical technique used to identify small molecules (metabolites) in living tissue that are indicative of metabolic pathway activity. Although highly sensitive and specific, the output of this modality is abstract and difficult to interpret. Our design study investigating the tasks and requirements for expert exploratory analysis of these data led to SpectraMosaic, a novel application enabling domain researchers to analyze any permutation of metabolites in ratio form for an entire cohort, or by sample region, individual, acquisition date, or brain activity status at the time of acquisition. A second approach considers the exploratory analysis of multidimensional physiological data at the opposite end of the spatio-temporal scale: population. An effective exploratory data analysis workflow critically must identify interesting patterns and relationships, which becomes increasingly difficult as data dimensionality increases. Although this can be partially addressed with existing dimensionality reduction techniques, the nature of these techniques means that subtle patterns may be lost in the process. In this approach, we describe DimLift, an iterative dimensionality reduction technique enabling user identification of interesting patterns and relationships that may lie subtly within a dataset through dimensional bundles. Key to this method is the user's ability to steer the dimensionality reduction technique to follow their own lines of inquiry. Our third question considers the crafting of visualizations for communication to audiences with different levels of expertise. It is natural to expect that experts in a topic may have different preferences and criteria to evaluate a visual communication relative to a non-expert audience. This impacts the success of an image in communicating a given scenario. Drawing from diverse techniques in biomedical illustration and visualization, we conducted an exploratory study of the criteria that audiences use when evaluating a biomedical process visualization targeted for communication. From this study, we identify opportunities for further convergence of biomedical illustration and visualization techniques for more targeted visual communication design. One opportunity that we discuss in greater depth is the development of semantically-consistent guidelines for the coloring of molecular scenes. The intent of such guidelines is to elevate the scientific literacy of non-expert audiences in the context of molecular visualization, which is particularly relevant to public health communication. All application code and empirical findings are open-sourced and available for reuse by the scientific community and public. The methods and findings presented in this thesis contribute to a foundation of cross-disciplinary biomedical illustration and visualization research, opening several opportunities for continued work in visualization for physiology.Doktorgradsavhandlin

    A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays

    Get PDF
    We report a micro-nuclear magnetic resonance (NMR) system compatible with multi-type biological/chemical lab-on-a-chip assays. Unified in a handheld scale (dimension: 14 x 6 x 11 cm³, weight: 1.4 kg), the system is capable to detect<100 pM of Enterococcus faecalis derived DNA from a 2.5 μL sample. The key components are a portable magnet (0.46 T, 1.25 kg) for nucleus magnetization, a system PCB for I/O interface, an FPGA for system control, a current driver for trimming the magnetic (B) field, and a silicon chip fabricated in 0.18 μm CMOS. The latter, integrated with a current-mode vertical Hall sensor and a low-noise readout circuit, facilitates closed-loop B-field stabilization (2 mT → 0.15 mT), which otherwise fluctuates with temperature or sample displacement. Together with a dynamic-B-field transceiver with a planar coil for micro-NMR assay and thermal control, the system demonstrates: 1) selective biological target pinpointing; 2) protein state analysis; and 3) solvent-polymer dynamics, suitable for healthcare, food and colloidal applications, respectively. Compared to a commercial NMR-assay product (Bruker mq-20), this platform greatly reduces the sample consumption (120x), hardware volume (175x), and weight (96x)

    A Deep Dive into Understanding Tumor Foci Classification using Multiparametric MRI Based on Convolutional Neural Network

    Full text link
    Deep learning models have had a great success in disease classifications using large data pools of skin cancer images or lung X-rays. However, data scarcity has been the roadblock of applying deep learning models directly on prostate multiparametric MRI (mpMRI). Although model interpretation has been heavily studied for natural images for the past few years, there has been a lack of interpretation of deep learning models trained on medical images. This work designs a customized workflow for the small and imbalanced data set of prostate mpMRI where features were extracted from a deep learning model and then analyzed by a traditional machine learning classifier. In addition, this work contributes to revealing how deep learning models interpret mpMRI for prostate cancer patients stratification

    Exploring the relationship between the Engineering and Physical Sciences and the Health and Life Sciences by advanced bibliometric methods

    Get PDF
    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade

    A Review on Data Fusion of Multidimensional Medical and Biomedical Data

    Get PDF
    Data fusion aims to provide a more accurate description of a sample than any one source of data alone. At the same time, data fusion minimizes the uncertainty of the results by combining data from multiple sources. Both aim to improve the characterization of samples and might improve clinical diagnosis and prognosis. In this paper, we present an overview of the advances achieved over the last decades in data fusion approaches in the context of the medical and biomedical fields. We collected approaches for interpreting multiple sources of data in different combinations: image to image, image to biomarker, spectra to image, spectra to spectra, spectra to biomarker, and others. We found that the most prevalent combination is the image-to-image fusion and that most data fusion approaches were applied together with deep learning or machine learning methods

    Random noise in Diffusion Tensor Imaging, its Destructive Impact and Some Corrections

    Get PDF
    The empirical origin of random noise is described, its influence on DTI variables is illustrated by a review of numerical and in vivo studies supplemented by new simulations investigating high noise levels. A stochastic model of noise propagation is presented to structure noise impact in DTI. Finally, basics of voxelwise and spatial denoising procedures are presented. Recent denoising procedures are reviewed and consequences of the stochastic model for convenient denoising strategies are discussed
    corecore