2,074 research outputs found

    A survey on sensor calibration in air pollution monitoring deployments

    Get PDF

    Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey

    Get PDF
    Growing progress in sensor technology has constantly expanded the number and range of low-cost, small, and portable sensors on the market, increasing the number and type of physical phenomena that can be measured with wirelessly connected sensors. Large-scale deployments of wireless sensor networks (WSN) involving hundreds or thousands of devices and limited budgets often constrain the choice of sensing hardware, which generally has reduced accuracy, precision, and reliability. Therefore, it is challenging to achieve good data quality and maintain error-free measurements during the whole system lifetime. Self-calibration or recalibration in ad hoc sensor networks to preserve data quality is essential, yet challenging, for several reasons, such as the existence of random noise and the absence of suitable general models. Calibration performed in the field, without accurate and controlled instrumentation, is said to be in an uncontrolled environment. This paper provides current and fundamental self-calibration approaches and models for wireless sensor networks in uncontrolled environments

    Low-Cost Outdoor Air Quality Monitoring and Sensor Calibration: A Survey and Critical Analysis

    Get PDF
    arXiv:1912.06384 [eess.SP]The significance of air pollution and the problems associated with it are fueling deployments of air quality monitoring stations worldwide. The most common approach for air quality monitoring is to rely on environmental monitoring stations, which unfortunately are very expensive both to acquire and to maintain. Hence environmental monitoring stations are typically sparsely deployed, resulting in limited spatial resolution for measurements. Recently, low-cost air quality sensors have emerged as an alternative that can improve the granularity of monitoring. The use of low-cost air quality sensors, however, presents several challenges: they suffer from cross-sensitivities between different ambient pollutants; they can be affected by external factors, such as traffic, weather changes, and human behavior; and their accuracy degrades over time. Periodic re-calibration can improve the accuracy of low-cost sensors, particularly with machine-learning-based calibration, which has shown great promise due to its capability to calibrate sensors in-field. In this article, we survey the rapidly growing research landscape of low-cost sensor technologies for air quality monitoring and their calibration using machine learning techniques. We also identify open research challenges and present directions for future research.Peer reviewe

    Remote real-time monitoring of subsurface landfill gas migration

    Get PDF
    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months

    Distributed environmental monitoring

    Get PDF
    With increasingly ubiquitous use of web-based technologies in society today, autonomous sensor networks represent the future in large-scale information acquisition for applications ranging from environmental monitoring to in vivo sensing. This chapter presents a range of on-going projects with an emphasis on environmental sensing; relevant literature pertaining to sensor networks is reviewed, validated sensing applications are described and the contribution of high-resolution temporal data to better decision-making is discussed

    A comparative study of calibration methods for low-cost ozone sensors in IoT platforms

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper shows the result of the calibration process of an Internet of Things platform for the measurement of tropospheric ozone (O 3 ). This platform, formed by 60 nodes, deployed in Italy, Spain, and Austria, consisted of 140 metal–oxide O 3 sensors, 25 electro-chemical O 3 sensors, 25 electro-chemical NO 2 sensors, and 60 temperature and relative humidity sensors. As ozone is a seasonal pollutant, which appears in summer in Europe, the biggest challenge is to calibrate the sensors in a short period of time. In this paper, we compare four calibration methods in the presence of a large dataset for model training and we also study the impact of a limited training dataset on the long-range predictions. We show that the difficulty in calibrating these sensor technologies in a real deployment is mainly due to the bias produced by the different environmental conditions found in the prediction with respect to those found in the data training phase.Peer ReviewedPostprint (author's final draft

    Issues of using wireless sensor network to monitor urban air quality

    Get PDF
    Frequent monitoring of urban environment has now been regulated in most EU countries. Due to the design and cost of high-quality sensors, the current approach using these sensors may not provide data with an appropriate spatial and temporal resolution. As a result, using a wireless sensor network constructed by a large number of low-cost sensors is becoming increasingly popular to support the monitoring of urban environments. However, in practice, there are many issues that prevent such networks to be widely adopted. In this paper, we use data and lessons learnt from three real deployments to illustrate those issues. The issues are classified into three main categories and discussed according to the different sensing stages. In the end, we summarise a list of open challenges which we believe are significant for the future research

    Sens-BERT: Enabling Transferability and Re-calibration of Calibration Models for Low-cost Sensors under Reference Measurements Scarcity

    Full text link
    Low-cost sensors measurements are noisy, which limits large-scale adaptability in airquality monitoirng. Calibration is generally used to get good estimates of air quality measurements out from LCS. In order to do this, LCS sensors are typically co-located with reference stations for some duration. A calibration model is then developed to transfer the LCS sensor measurements to the reference station measurements. Existing works implement the calibration of LCS as an optimization problem in which a model is trained with the data obtained from real-time deployments; later, the trained model is employed to estimate the air quality measurements of that location. However, this approach is sensor-specific and location-specific and needs frequent re-calibration. The re-calibration also needs massive data like initial calibration, which is a cumbersome process in practical scenarios. To overcome these limitations, in this work, we propose Sens-BERT, a BERT-inspired learning approach to calibrate LCS, and it achieves the calibration in two phases: self-supervised pre-training and supervised fine-tuning. In the pre-training phase, we train Sens-BERT with only LCS data (without reference station observations) to learn the data distributional features and produce corresponding embeddings. We then use the Sens-BERT embeddings to learn a calibration model in the fine-tuning phase. Our proposed approach has many advantages over the previous works. Since the Sens-BERT learns the behaviour of the LCS, it can be transferable to any sensor of the same sensing principle without explicitly training on that sensor. It requires only LCS measurements in pre-training to learn the characters of LCS, thus enabling calibration even with a tiny amount of paired data in fine-tuning. We have exhaustively tested our approach with the Community Air Sensor Network (CAIRSENSE) data set, an open repository for LCS.Comment: 1
    corecore