1,509 research outputs found

    A classification of predictive-reactive project scheduling procedures.

    Get PDF
    The vast majority of the project scheduling research efforts over the past several years have concentrated on the development of workable predictive baseline schedules, assuming complete information and a static and deterministic environment. During execution, however, a project may be subject to numerous schedule disruptions. Proactive-reactive project scheduling procedures try to cope with these disruptions through the combination of a proactive scheduling procedure for generating predictive baseline schedules that are hopefully robust in that they incorporate safety time to absorb anticipated disruptions with a reactive procedure that is invoked when a schedule breakage occurs during project execution.proactive-reactive project scheduling; time uncertainty; stability; timely project completion; preselective strategies; resource constraints; trade-off; complexity; stability; management; makespan; networks; subject; job;

    Dispatching and Rescheduling Tasks and Their Interactions with Travel Demand and the Energy Domain: Models and Algorithms

    Get PDF
    Abstract The paper aims to provide an overview of the key factors to consider when performing reliable modelling of rail services. Given our underlying belief that to build a robust simulation environment a rail service cannot be considered an isolated system, also the connected systems, which influence and, in turn, are influenced by such services, must be properly modelled. For this purpose, an extensive overview of the rail simulation and optimisation models proposed in the literature is first provided. Rail simulation models are classified according to the level of detail implemented (microscopic, mesoscopic and macroscopic), the variables involved (deterministic and stochastic) and the processing techniques adopted (synchronous and asynchronous). By contrast, within rail optimisation models, both planning (timetabling) and management (rescheduling) phases are discussed. The main issues concerning the interaction of rail services with travel demand flows and the energy domain are also described. Finally, in an attempt to provide a comprehensive framework an overview of the main metaheuristic resolution techniques used in the planning and management phases is shown

    Evaluating the Applicability of Advanced Techniques for Practical Real-time Train Scheduling

    Get PDF
    AbstractThis paper reports on the practical applicability of published techniques for real-time train scheduling. The final goal is the development of an advanced decision support system for supporting dispatchers’ work and for guiding them toward near-optimal real-time re-timing, re-ordering and re-routing decisions. The paper focuses on the optimization system AGLIBRARY that manages trains at the microscopic level of block sections and block signals and at a precision of seconds. The system outcome is a detailed conflict-free train schedule, being able to avoid deadlocks and to minimize train delays. Experiments on a British railway nearby London demonstrate that AGLIBRARY can quickly compute near-optimal solutions

    Simulation and Control of Groups of People in Multi-modal Mobility

    Get PDF
    Tourism and transport are constantly growing and, with it, the movements of travellers. This entails two fundamental effects on which we must focus: control of mass tourism and the organization of transport. Good transport organization and travel planning avoid crowds and therefore mass tourism. This allows promoting sustainable tourism in which it is sought to offer a quality service to tourists taking care of the environment. In this thesis the objective is to manage the flow of groups of people through means of transport. This control of groups of people is aimed at customer satisfaction by offering quality tourism. On the one hand, the study focuses on the problem to mitigate the negative effects due to mass arrivals in touristic locations. A TEN network has been developed to define the optimal tours for different groups of tourists. A related mixed integer quadratic optimization model has been developed with three main objectives: it minimizes the maximum value of occupancy in the selected destinations to limit mass tourism, reduces the divergence between the proposed visit tour and one required by the tourist group and the overall duration of their visit, and a heuristic approach has been introduced. On the other hand, it has been implemented a railway scheduling and rescheduling problem introducing optimization-based and min-max approaches on the regional and high-speed railway network. The scheduling model defines the best schedules for a set of trains considering costumers\u2019 demand and the priority of the trains to cover the rail sections in case of conflict on the railway lines. Consecutively, the generated feasible timetables are used to minimize possible consequences due to events that may negatively affect the real time traffic management. The main contribution of this section is the introduction in the second approach the innovative concept to prioritize the train that can access on the block section in case of conflicts on the network

    Susceptibility of optimal train schedules to stochastic disturbances of process times

    Get PDF
    This work focuses on the stochastic evaluation of train schedules computed by a microscopic scheduler of railway operations based on deterministic information. The research question is to assess the degree of sensitivity of various rescheduling algorithms to variations in process times (running and dwell times). In fact, the objective of railway traffic management is to reduce delay propagation and to increase disturbance robustness of train schedules at a network scale. We present a quantitative study of traffic disturbances and their effects on the schedules computed by simple and advanced rescheduling algorithms. Computational results are based on a complex and densely occupied Dutch railway area; train delays are computed based on accepted statistical distributions, and dwell and running times of trains are subject to additional stochastic variations. From the results obtained on a real case study, an advanced branch and bound algorithm, on average, outperforms a First In First Out scheduling rule both in deterministic and stochastic traffic scenarios. However, the characteristic of the stochastic processes and the way a stochastic instance is handled turn out to have a serious impact on the scheduler performance

    Issues on simulation of the railway rolling stock operation process – a system and literature review

    Get PDF
    Railway traffic simulation, taking into account operation and maintenance conditions, is not a new issue in the literature. External effects in such networks (eg. level crossings) were not taken into account in studies. The used models do not take into account sufficiently the process of degradation and recovery of the network. From the technical side, currently carried out simulations are made using similar approaches and techniques as in the initial stage of research. Well-established work in this area could be the basis for evaluation of new solutions. However, the progress in simulation tools during the last years, especially in performance and programming architecture, attempt to create a modern simulation tool. In the paper were presented the main assumptions for the evaluated event-based simulation method, with application to stiff-track transportation network

    Train scheduling with application to the UK rail network

    No full text
    Nowadays, transforming the railway industry for better performance and making the best usage of the current capacity are the key issues in many countries. Operational research methods and in particular scheduling techniques have a substantial potential to offer algorithmic solutions to improve railway operation and control. This thesis looks at train scheduling and rescheduling problems in a microscopic level with regard to the track topology. All of the timetable components are fixed and we aim to minimize delay by considering a tardiness objective function and only allowing changes to the order and to the starting times of trains on blocks. Various operational and safety constraints should be considered. We have achieved further developments in the field including generalizations to the existing models in order to obtain a generic model that includes important additional constraints. We make use of the analogy between the train scheduling problem and job shop scheduling problem. The model is customized to the UK railway network and signaling system. Introduced solution methods are inspired by the successful results of the shifting bottleneck to solve the job shop scheduling problems. Several solution methods such as mathematical programming and different variants of the shifting bottleneck are investigated. The proposed methods are implemented on a real-world case study based on London Bridge area in the South East of the UK. It is a dense network of interconnected lines and complicated with regard to stations and junctions structure. Computational experiments show the efficiency and limitations of the mathematical programming model and one variant of the proposed shifting bottleneck algorithms. This study also addresses train routing and rerouting problems in a mesoscopic level regarding relaxing some of the detailed constraints. The aim is to make the best usage of routing options in the network to minimize delay propagation. In addition to train routes, train entry times and orders on track segment are defined. Hence, the routing and scheduling decisions are combined in the solutions arising from this problem. Train routing and rerouting problems are formulated as modified job shop problems to include the main safety and operational constraints. Novel shifting bottleneck algorithms are provided to solve the problem. Computational results are reported on the same case study based on London Bridge area and the results show the efficiency of one variant of the developed shifting bottleneck algorithms in terms of solution quality and runtime

    Computer-based decision support for railway traffic scheduling and dispatching: A review of models and algorithms

    Get PDF
    This paper provides an overview of the research in railway scheduling and dispatching. A distinction is made between tactical scheduling, operational scheduling and re-scheduling. Tactical scheduling refers to master scheduling, whereas operational scheduling concerns scheduling at a later stage. Re-scheduling focuses on the re-planning of an existing timetable when deviations from it have occurred. 48 approaches published between 1973 and 2005 have been reviewed according to a framework that classifies them with respect to problem type, solution mechanism, and type of evaluation. 26 of the approaches support the representation of a railway network rather than a railway line, but the majority has been experimentally evaluated for traffic on a line. 94 % of the approaches have been subject to some kind of experimental evaluation, while approximately 4 % have been implemented. The solutions proposed vary from myopic, priority-based algorithms, to traditional operations research techniques and the application of agent technology.This paper provides an overview of the research in railway scheduling and dispatching. A distinction is made between tactical scheduling, operational scheduling and re-scheduling. Tactical scheduling refers to master scheduling, whereas operational scheduling concerns scheduling at a later stage. Re-scheduling focuses on the re-planning of an existing timetable when deviations from it have occurred. 48 approaches published between 1973 and 2005 have been reviewed according to a framework that classifies them with respect to problem type, solution mechanism, and type of evaluation. 26 of the approaches support the representation of a railway network rather than a railway line, but the majority has been experimentally evaluated for traffic on a line. 94 % of the approaches have been subject to some kind of experimental evaluation, while approximately 4 % have been implemented. The solutions proposed vary from myopic, priority-based algorithms, to traditional operations research techniques and the application of agent technology

    Optimization-Based Methods for Revising Train Timetables with Focus on Robustness

    Full text link
    • 

    corecore