3,724 research outputs found

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    On the Decidability of Non Interference over Unbounded Petri Nets

    Full text link
    Non-interference, in transitive or intransitive form, is defined here over unbounded (Place/Transition) Petri nets. The definitions are adaptations of similar, well-accepted definitions introduced earlier in the framework of labelled transition systems. The interpretation of intransitive non-interference which we propose for Petri nets is as follows. A Petri net represents the composition of a controlled and a controller systems, possibly sharing places and transitions. Low transitions represent local actions of the controlled system, high transitions represent local decisions of the controller, and downgrading transitions represent synchronized actions of both components. Intransitive non-interference means the impossibility for the controlled system to follow any local strategy that would force or dodge synchronized actions depending upon the decisions taken by the controller after the last synchronized action. The fact that both language equivalence and bisimulation equivalence are undecidable for unbounded labelled Petri nets might be seen as an indication that non-interference properties based on these equivalences cannot be decided. We prove the opposite, providing results of decidability of non-interference over a representative class of infinite state systems.Comment: In Proceedings SecCo 2010, arXiv:1102.516

    Process Calculi Abstractions for Biology

    Get PDF
    Several approaches have been proposed to model biological systems by means of the formal techniques and tools available in computer science. To mention just a few of them, some representations are inspired by Petri Nets theory, and some other by stochastic processes. A most recent approach consists in interpreting the living entities as terms of process calculi where the behavior of the represented systems can be inferred by applying syntax-driven rules. A comprehensive picture of the state of the art of the process calculi approach to biological modeling is still missing. This paper goes in the direction of providing such a picture by presenting a comparative survey of the process calculi that have been used and proposed to describe the behavior of living entities. This is the preliminary version of a paper that was published in Algorithmic Bioprocesses. The original publication is available at http://www.springer.com/computer/foundations/book/978-3-540-88868-

    Distributed Non-Interference

    Full text link
    Information flow security properties were defined some years ago (see, e.g., the surveys \cite{FG01,Ry01}) in terms of suitable equivalence checking problems. These definitions were provided by using sequential models of computations (e.g., labeled transition systems \cite{GV15}), and interleaving behavioral equivalences (e.g., bisimulation equivalence \cite{Mil89}). More recently, the distributed model of Petri nets has been used to study non-interference in \cite{BG03,BG09,BC15}, but also in these papers an interleaving semantics was used. We argue that in order to capture all the relevant information flows, truly-concurrent behavioral equivalences must be used. In particular, we propose for Petri nets the distributed non-interference property, called DNI, based on {\em branching place bisimilarity} \cite{Gor21b}, which is a sensible, decidable equivalence for finite Petri nets with silent moves. Then we focus our attention on the subclass of Petri nets called {\em finite-state machines}, which can be represented (up to isomorphism) by the simple process algebra CFM \cite{Gor17}. DNI is very easily checkable on CFM processes, as it is compositional, so that it does does not suffer from the state-space explosion problem. Moreover, we show that DNI can be characterized syntactically on CFM by means of a type system

    Zero-gravity movement studies

    Get PDF
    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms

    Hyper Partial Order Logic

    Get PDF
    We define HyPOL, a local hyper logic for partial order models, expressing properties of sets of runs. These properties depict shapes of causal dependencies in sets of partially ordered executions, with similarity relations defined as isomorphisms of past observations. Unsurprisingly, since comparison of projections are included, satisfiability of this logic is undecidable. We then address model checking of HyPOL and show that, already for safe Petri nets, the problem is undecidable. Fortunately, sensible restrictions of observations and nets allow us to bring back model checking of HyPOL to a decidable problem, namely model checking of MSO on graphs of bounded treewidth

    Model-driven development of data intensive applications over cloud resources

    Get PDF
    The proliferation of sensors over the last years has generated large amounts of raw data, forming data streams that need to be processed. In many cases, cloud resources are used for such processing, exploiting their flexibility, but these sensor streaming applications often need to support operational and control actions that have real-time and low-latency requirements that go beyond the cost effective and flexible solutions supported by existing cloud frameworks, such as Apache Kafka, Apache Spark Streaming, or Map-Reduce Streams. In this paper, we describe a model-driven and stepwise refinement methodological approach for streaming applications executed over clouds. The central role is assigned to a set of Petri Net models for specifying functional and non-functional requirements. They support model reuse, and a way to combine formal analysis, simulation, and approximate computation of minimal and maximal boundaries of non-functional requirements when the problem is either mathematically or computationally intractable. We show how our proposal can assist developers in their design and implementation decisions from a performance perspective. Our methodology allows to conduct performance analysis: The methodology is intended for all the engineering process stages, and we can (i) analyse how it can be mapped onto cloud resources, and (ii) obtain key performance indicators, including throughput or economic cost, so that developers are assisted in their development tasks and in their decision taking. In order to illustrate our approach, we make use of the pipelined wavefront array

    Survey on assembly sequencing: a combinatorial and geometrical perspective

    Get PDF
    A systematic overview on the subject of assembly sequencing is presented. Sequencing lies at the core of assembly planning, and variants include finding a feasible sequence—respecting the precedence constraints between the assembly operations—, or determining an optimal one according to one or several operational criteria. The different ways of representing the space of feasible assembly sequences are described, as well as the search and optimization algorithms that can be used. Geometry plays a fundamental role in devising the precedence constraints between assembly operations, and this is the subject of the second part of the survey, which treats also motion in contact in the context of the actual performance of assembly operations.Peer ReviewedPostprint (author’s final draft
    corecore