40,166 research outputs found

    Locating Depots for Capacitated Vehicle Routing

    Full text link
    We study a location-routing problem in the context of capacitated vehicle routing. The input is a set of demand locations in a metric space and a fleet of k vehicles each of capacity Q. The objective is to locate k depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for this problem. To achieve this result, we reduce to the k-median-forest problem, which generalizes both k-median and minimum spanning tree, and which might be of independent interest. We give a (3+c)-approximation algorithm for k-median-forest, which leads to a (12+c)-approximation algorithm for the above location-routing problem, for any constant c>0. The algorithm for k-median-forest is just t-swap local search, and we prove that it has locality gap 3+2/t; this generalizes the corresponding result known for k-median. Finally we consider the "non-uniform" k-median-forest problem which has different cost functions for the MST and k-median parts. We show that the locality gap for this problem is unbounded even under multi-swaps, which contrasts with the uniform case. Nevertheless, we obtain a constant-factor approximation algorithm, using an LP based approach.Comment: 12 pages, 1 figur

    Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem

    Get PDF
    This paper studies heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree using edges that are as similar as possible. Given an undirected labelled connected graph, the minimum labelling spanning tree problem seeks a spanning tree whose edges have the smallest number of distinct labels. This problem has been shown to be NP-hard. A Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable Neighbourhood Search (VNS) are proposed in this paper. They are compared with other algorithms recommended in the literature: the Modified Genetic Algorithm and the Pilot Method. Nonparametric statistical tests show that the heuristics based on GRASP and VNS outperform the other algorithms tested. Furthermore, a comparison with the results provided by an exact approach shows that we may quickly obtain optimal or near-optimal solutions with the proposed heuristics

    Variable neighbourhood search for the minimum labelling Steiner tree problem

    Get PDF
    We present a study on heuristic solution approaches to the minimum labelling Steiner tree problem, an NP-hard graph problem related to the minimum labelling spanning tree problem. Given an undirected labelled connected graph, the aim is to find a spanning tree covering a given subset of nodes of the graph, whose edges have the smallest number of distinct labels. Such a model may be used to represent many real world problems in telecommunications and multimodal transportation networks. Several metaheuristics are proposed and evaluated. The approaches are compared to the widely adopted Pilot Method and it is shown that the Variable Neighbourhood Search metaheuristic is the most effective approach to the problem, obtaining high quality solutions in short computational running times
    corecore