8,034 research outputs found

    Safety verification of a fault tolerant reconfigurable autonomous goal-based robotic control system

    Get PDF
    Fault tolerance and safety verification of control systems are essential for the success of autonomous robotic systems. A control architecture called Mission Data System (MDS), developed at the Jet Propulsion Laboratory, takes a goal-based control approach. In this paper, a method for converting goal network control programs into linear hybrid systems is developed. The linear hybrid system can then be verified for safety in the presence of failures using existing symbolic model checkers. An example task is simulated in MDS and successfully verified using HyTech, a symbolic model checking software for linear hybrid systems

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Smart Power Grid Synchronization With Fault Tolerant Nonlinear Estimation

    Get PDF
    Effective real-time state estimation is essential for smart grid synchronization, as electricity demand continues to grow, and renewable energy resources increase their penetration into the grid. In order to provide a more reliable state estimation technique to address the problem of bad data in the PMU-based power synchronization, this paper presents a novel nonlinear estimation framework to dynamically track frequency, voltage magnitudes and phase angles. Instead of directly analyzing in abc coordinate frame, symmetrical component transformation is employed to separate the positive, negative, and zero sequence networks. Then, Clarke\u27s transformation is used to transform the sequence networks into the αβ stationary coordinate frame, which leads to system model formulation. A novel fault tolerant extended Kalman filter based real-time estimation framework is proposed for smart grid synchronization with noisy bad data measurements. Computer simulation studies have demonstrated that the proposed fault tolerant extended Kalman filter (FTEKF) provides more accurate voltage synchronization results than the extended Kalman filter (EKF). The proposed approach has been implemented with dSPACE DS1103 and National Instruments CompactRIO hardware platforms. Computer simulation and hardware instrumentation results have shown the potential applications of FTEKF in smart grid synchronization

    Process operating mode monitoring : switching online the right controller

    Get PDF
    This paper presents a structure which deals with process operating mode monitoring and allows the control law reconfiguration by switching online the right controller. After a short review of the advances in switching based control systems during the last decade, we introduce our approach based on the definition of operating modes of a plant. The control reconfiguration strategy is achieved by online selection of an adequate controller, in a case of active accommodation. The main contribution lies in settling up the design steps of the multicontroller structure and its accurate integration in the operating mode detection and accommodation loop. Simulation results show the effectiveness of the operating mode detection and accommodation (OMDA) structure for which the design steps propose a method to study the asymptotic stability, switching performances improvement, and the tuning of the multimodel based detector

    Conversion and verification procedure for goal-based control programs

    Get PDF
    Fault tolerance and safety verification of control systems are essential for the success of autonomous robotic systems. A control architecture called Mission Data System, developed at the Jet Propulsion Laboratory, takes a goal-based control approach. In this paper, a method for converting goal network control programs into linear hybrid systems is developed. The linear hybrid system can then be verified for safety in the presence of failures using existing symbolic model checkers. An example task is developed and successfully verified using HyTech, a symbolic model checking software for linear hybrid systems

    Real-time predictive maintenance for wind turbines using Big Data frameworks

    Full text link
    This work presents the evolution of a solution for predictive maintenance to a Big Data environment. The proposed adaptation aims for predicting failures on wind turbines using a data-driven solution deployed in the cloud and which is composed by three main modules. (i) A predictive model generator which generates predictive models for each monitored wind turbine by means of Random Forest algorithm. (ii) A monitoring agent that makes predictions every 10 minutes about failures in wind turbines during the next hour. Finally, (iii) a dashboard where given predictions can be visualized. To implement the solution Apache Spark, Apache Kafka, Apache Mesos and HDFS have been used. Therefore, we have improved the previous work in terms of data process speed, scalability and automation. In addition, we have provided fault-tolerant functionality with a centralized access point from where the status of all the wind turbines of a company localized all over the world can be monitored, reducing O&M costs

    Analyzing Cascading Failures in Smart Grids under Random and Targeted Attacks

    Full text link
    We model smart grids as complex interdependent networks, and study targeted attacks on smart grids for the first time. A smart grid consists of two networks: the power network and the communication network, interconnected by edges. Occurrence of failures (attacks) in one network triggers failures in the other network, and propagates in cascades across the networks. Such cascading failures can result in disintegration of either (or both) of the networks. Earlier works considered only random failures. In practical situations, an attacker is more likely to compromise nodes selectively. We study cascading failures in smart grids, where an attacker selectively compromises the nodes with probabilities proportional to their degrees; high degree nodes are compromised with higher probability. We mathematically analyze the sizes of the giant components of the networks under targeted attacks, and compare the results with the corresponding sizes under random attacks. We show that networks disintegrate faster for targeted attacks compared to random attacks. A targeted attack on a small fraction of high degree nodes disintegrates one or both of the networks, whereas both the networks contain giant components for random attack on the same fraction of nodes.Comment: Accepted for publication in 28th IEEE International Conference on Advanced Information Networking and Applications (AINA) 201

    Permission-based fault tolerant mutual exclusion algorithm for mobile Ad Hoc networks

    Get PDF
    This study focuses on resolving the problem of mutual exclusion in mobile ad hoc networks. A Mobile Ad Hoc Network (MANET) is a wireless network without fixed infrastructure. Nodes are mobile and topology of MANET changes very frequently and unpredictably. Due to these limitations, conventional mutual exclusion algorithms presented for distributed systems (DS) are not applicable for MANETs unless they attach to a mechanism for dynamic changes in their topology. Algorithms for mutual exclusion in DS are categorized into two main classes including token-based and permission-based algorithms. Token-based algorithms depend on circulation of a specific message known as token. The owner of the token has priority for entering the critical section. Token may lose during communications, because of link failure or failure of token host. However, the processes for token-loss detection and token regeneration are very complicated and time-consuming. Token-based algorithms are generally non-fault-tolerant (although some mechanisms are utilized to increase their level of fault-tolerance) because of common problem of single token as a single point of failure. On the contrary, permission-based algorithms utilize the permission of multiple nodes to guarantee mutual exclusion. It yields to high traffic when number of nodes is high. Moreover, the number of message transmissions and energy consumption increase in MANET by increasing the number of mobile nodes accompanied in every decision making cycle. The purpose of this study is to introduce a method of managing the critical section,named as Ancestral, having higher fault-tolerance than token-based and fewer message transmissions and traffic rather that permission-based algorithms. This method makes a tradeoff between token-based and permission-based. It does not utilize any token, that is similar to permission-based, and the latest node having the critical section influences the entrance of the next node to the critical section, that is similar to token-based algorithms. The algorithm based on ancestral is named as DAD algorithms and increases the availability of fully connected network between 2.86 to 59.83% and decreases the number of message transmissions from 4j-2 to 3j messages (j as number of nodes in partition). This method is then utilized as the basis of dynamic ancestral mutual exclusion algorithm for MANET which is named as MDA. This algorithm is presented and evaluated for different scenarios of mobility of nodes, failure, load and number of nodes. The results of study show that MDA algorithm guarantees mutual exclusion,dead lock freedom and starvation freedom. It improves the availability of CS to minimum 154.94% and 113.36% for low load and high load of CS requests respectively compared to other permission-based lgorithm.Furthermore, it improves response time up to 90.69% for high load and 75.21% for low load of CS requests. It degrades the number of messages from n to 2 messages in the best case and from 3n/2 to n in the worst case. MDA algorithm is resilient to transient partitioning of network that is normally occurs due to failure of nodes or links
    corecore