4 research outputs found

    Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed Workloads

    Full text link
    Filtering data based on predicates is one of the most fundamental operations for any modern data warehouse. Techniques to accelerate the execution of filter expressions include clustered indexes, specialized sort orders (e.g., Z-order), multi-dimensional indexes, and, for high selectivity queries, secondary indexes. However, these schemes are hard to tune and their performance is inconsistent. Recent work on learned multi-dimensional indexes has introduced the idea of automatically optimizing an index for a particular dataset and workload. However, the performance of that work suffers in the presence of correlated data and skewed query workloads, both of which are common in real applications. In this paper, we introduce Tsunami, which addresses these limitations to achieve up to 6X faster query performance and up to 8X smaller index size than existing learned multi-dimensional indexes, in addition to up to 11X faster query performance and 170X smaller index size than optimally-tuned traditional indexes

    Learning Multi-dimensional Indexes

    Full text link
    Scanning and filtering over multi-dimensional tables are key operations in modern analytical database engines. To optimize the performance of these operations, databases often create clustered indexes over a single dimension or multi-dimensional indexes such as R-trees, or use complex sort orders (e.g., Z-ordering). However, these schemes are often hard to tune and their performance is inconsistent across different datasets and queries. In this paper, we introduce Flood, a multi-dimensional in-memory index that automatically adapts itself to a particular dataset and workload by jointly optimizing the index structure and data storage. Flood achieves up to three orders of magnitude faster performance for range scans with predicates than state-of-the-art multi-dimensional indexes or sort orders on real-world datasets and workloads. Our work serves as a building block towards an end-to-end learned database system

    Towards Large-Scale, Heterogeneous Anomaly Detection Systems in Industrial Networks: A Survey of Current Trends

    Get PDF
    Industrial Networks (INs) are widespread environments where heterogeneous devices collaborate to control and monitor physical processes. Some of the controlled processes belong to Critical Infrastructures (CIs), and, as such, IN protection is an active research field. Among different types of security solutions, IN Anomaly Detection Systems (ADSs) have received wide attention from the scientific community.While INs have grown in size and in complexity, requiring the development of novel, Big Data solutions for data processing, IN ADSs have not evolved at the same pace. In parallel, the development of BigData frameworks such asHadoop or Spark has led the way for applying Big Data Analytics to the field of cyber-security,mainly focusing on the Information Technology (IT) domain. However, due to the particularities of INs, it is not feasible to directly apply IT security mechanisms in INs, as IN ADSs face unique characteristics. In this work we introduce three main contributions. First, we survey the area of Big Data ADSs that could be applicable to INs and compare the surveyed works. Second, we develop a novel taxonomy to classify existing INbased ADSs. And, finally, we present a discussion of open problems in the field of Big Data ADSs for INs that can lead to further development
    corecore