43,028 research outputs found

    Speaker segmentation and clustering

    Get PDF
    This survey focuses on two challenging speech processing topics, namely: speaker segmentation and speaker clustering. Speaker segmentation aims at finding speaker change points in an audio stream, whereas speaker clustering aims at grouping speech segments based on speaker characteristics. Model-based, metric-based, and hybrid speaker segmentation algorithms are reviewed. Concerning speaker clustering, deterministic and probabilistic algorithms are examined. A comparative assessment of the reviewed algorithms is undertaken, the algorithm advantages and disadvantages are indicated, insight to the algorithms is offered, and deductions as well as recommendations are given. Rich transcription and movie analysis are candidate applications that benefit from combined speaker segmentation and clustering. © 2007 Elsevier B.V. All rights reserved

    Optimizing Data Stream Representation: An Extensive Survey on Stream Clustering Algorithms

    Get PDF
    Abstract Analyzing data streams has received considerable attention over the past decades due to the widespread usage of sensors, social media and other streaming data sources. A core research area in this field is stream clustering which aims to recognize patterns in an unordered, infinite and evolving stream of observations. Clustering can be a crucial support in decision making, since it aims for an optimized aggregated representation of a continuous data stream over time and allows to identify patterns in large and high-dimensional data. A multitude of algorithms and approaches has been developed that are able to find and maintain clusters over time in the challenging streaming scenario. This survey explores, summarizes and categorizes a total of 51 stream clustering algorithms and identifies core research threads over the past decades. In particular, it identifies categories of algorithms based on distance thresholds, density grids and statistical models as well as algorithms for high dimensional data. Furthermore, it discusses applications scenarios, available software and how to configure stream clustering algorithms. This survey is considerably more extensive than comparable studies, more up-to-date and highlights how concepts are interrelated and have been developed over time

    Clustering of nonstationary data streams: a survey of fuzzy partitional methods

    Get PDF
    YesData streams have arisen as a relevant research topic during the past decade. They are real‐time, incremental in nature, temporally ordered, massive, contain outliers, and the objects in a data stream may evolve over time (concept drift). Clustering is often one of the earliest and most important steps in the streaming data analysis workflow. A comprehensive literature is available about stream data clustering; however, less attention is devoted to the fuzzy clustering approach, even though the nonstationary nature of many data streams makes it especially appealing. This survey discusses relevant data stream clustering algorithms focusing mainly on fuzzy methods, including their treatment of outliers and concept drift and shift.Ministero dell‘Istruzione, dell‘Universitá e della Ricerca

    On density-based data streams clustering algorithms: A survey

    Get PDF
    Clustering data streams has drawn lots of attention in the few years due to their ever-growing presence. Data streams put additional challenges on clustering such as limited time and memory and one pass clustering. Furthermore, discovering clusters with arbitrary shapes is very important in data stream applications. Data streams are infinite and evolving over time, and we do not have any knowledge about the number of clusters. In a data stream environment due to various factors, some noise appears occasionally. Density-based method is a remarkable class in clustering data streams, which has the ability to discover arbitrary shape clusters and to detect noise. Furthermore, it does not need the number of clusters in advance. Due to data streams characteristics, the traditional density-based clustering is not applicable. Recently, a lot of density-based clustering algorithms are extended for data streams. The main idea in these algorithms is using density-based methods in the clustering process and at the same time overcoming the constraints, which are put out by data stream’s nature. The purpose of this paper is to shed light on some algorithms in the literature on density-based clustering over data streams. We not only summarize the main density-based clustering algorithms on data streams, discuss their uniqueness and limitations, but also explain how they address the challenges in clustering data streams. Moreover, we investigate the evaluation metrics used in validating cluster quality and measuring algorithms’ performance. It is hoped that this survey will serve as a steppingstone for researchers studying data streams clustering, particularly density-based algorithms

    Network Sampling: From Static to Streaming Graphs

    Full text link
    Network sampling is integral to the analysis of social, information, and biological networks. Since many real-world networks are massive in size, continuously evolving, and/or distributed in nature, the network structure is often sampled in order to facilitate study. For these reasons, a more thorough and complete understanding of network sampling is critical to support the field of network science. In this paper, we outline a framework for the general problem of network sampling, by highlighting the different objectives, population and units of interest, and classes of network sampling methods. In addition, we propose a spectrum of computational models for network sampling methods, ranging from the traditionally studied model based on the assumption of a static domain to a more challenging model that is appropriate for streaming domains. We design a family of sampling methods based on the concept of graph induction that generalize across the full spectrum of computational models (from static to streaming) while efficiently preserving many of the topological properties of the input graphs. Furthermore, we demonstrate how traditional static sampling algorithms can be modified for graph streams for each of the three main classes of sampling methods: node, edge, and topology-based sampling. Our experimental results indicate that our proposed family of sampling methods more accurately preserves the underlying properties of the graph for both static and streaming graphs. Finally, we study the impact of network sampling algorithms on the parameter estimation and performance evaluation of relational classification algorithms
    corecore