135 research outputs found

    A survey on Bluetooth multi-hop networks

    Get PDF
    Bluetooth was firstly announced in 1998. Originally designed as cable replacement connecting devices in a point-to-point fashion its high penetration arouses interest in its ad-hoc networking potential. This ad-hoc networking potential of Bluetooth is advertised for years - but until recently no actual products were available and less than a handful of real Bluetooth multi-hop network deployments were reported. The turnaround was triggered by the release of the Bluetooth Low Energy Mesh Profile which is unquestionable a great achievement but not well suited for all use cases of multi-hop networks. This paper surveys the tremendous work done on Bluetooth multi-hop networks during the last 20 years. All aspects are discussed with demands for a real world Bluetooth multi-hop operation in mind. Relationships and side effects of different topics for a real world implementation are explained. This unique focus distinguishes this survey from existing ones. Furthermore, to the best of the authors’ knowledge this is the first survey consolidating the work on Bluetooth multi-hop networks for classic Bluetooth technology as well as for Bluetooth Low Energy. Another individual characteristic of this survey is a synopsis of real world Bluetooth multi-hop network deployment efforts. In fact, there are only four reports of a successful establishment of a Bluetooth multi-hop network with more than 30 nodes and only one of them was integrated in a real world application - namely a photovoltaic power plant. © 2019 The Author

    Message forwarding techniques in Bluetooth enabled opportunistic communication environment

    Get PDF
    These days, most of the mobile phones are smart enough with computer like intelligence and equipped with multiple communication technologies such as Bluetooth, wireless LAN, GPRS and GSM. Different communication medium on single device have unlocked the new horizon of communication means. Modern mobile phones are not only capable of using traditional way of communication via GSM or GPRS; but, also use wireless LANs using access points where available. Among these communication means, Bluetooth technology is very intriguing and unique in nature. Any two devices equipped with Bluetooth technology can communicate directly due to their unique IDs in the world. This is opposite to GSM or Wireless LAN technology; where devices are dependent on infrastructure of service providers and have to pay for their services. Due to continual advancement in the field of mobile technology, mobile ad-hoc network seems to be more realised than ever using Bluetooth. In traditional mobile ad-hoc networks (MANETs), before information sharing, devices have partial or full knowledge of routes to the destinations using ad-hoc routing protocols. This kind of communication can only be realised if nodes follow the certain pattern. However, in reality mobile ad-hoc networks are highly unpredictable, any node can join or leave network at any time, thus making them risky for effective communication. This issue is addressed by introducing new breed of ad-hoc networking, known as opportunistic networks. Opportunistic networking is a concept that is evolved from mobile ad-hoc networking. In opportunistic networks nodes have no prior knowledge of routes to intended destinations. Any node in the network can be used as potential forwarder with the exception of taking information one step closer to intended destination. The forwarding decision is based on the information gathered from the source node or encountering node. The opportunistic forwarding can only be achieved if message forwarding is carried out in store and forward fashion. Although, opportunistic networks are more flexible than traditional MANETs, however, due to little insight of network, it poses distinct challenges such as intermittent connectivity, variable delays, short connection duration and dynamic topology. Addressing these challenges in opportunistic network is the basis for developing new and efficient protocols for information sharing. The aim of this research is to design different routing/forwarding techniques for opportunistic networks to improve the overall message delivery at destinations while keeping the communication cost very low. Some assumptions are considered to improved directivity of message flow towards intended destinations. These assumptions exploit human social relationships analogies, approximate awareness of the location of nodes in the network and use of hybrid communication by combining several routing concept to gain maximum message directivity. Enhancement in message forwarding in opportunistic networks can be achieved by targeting key nodes that show high degree of influence, popularity or knowledge inside the network. Based on this observation, this thesis presents an improved version of Lobby Influence (LI) algorithm called as Enhanced Lobby Influence (ELI). In LI, the forwarding decision is based on two important factors, popularity of node and popularity of node’s neighbour. The forwarding decision of Enhanced Lobby Influence not only depends on the intermediate node selection criteria as defined in Lobby Influence but also based on the knowledge of previously direct message delivery of intended destination. An improvement can be observed if nodes are aware of approximate position of intended destinations by some communication means such as GPS, GSM or WLAN access points. With the knowledge of nodes position in the network, high message directivity can be achieved by using simple concepts of direction vectors. Based on this observation, this research presents another new algorithm named as Location-aware opportunistic content forwarding (LOC). Last but not least, this research presents an orthodox yet unexplored approach for efficient message forwarding in Bluetooth communication environment, named as Hybrid Content Forwarding (HCF). The new approach combines the characteristics of social centrality based forwarding techniques used in opportunistic networks with traditional MANETs protocols used in Bluetooth scatternets. Simulation results show that a significant increase in delivery radio and cost reduction during content forwarding is observed by deploying these proposed algorithms. Also, comparison with existing technique shows the efficiency of using the new schemes

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    Energy efficiency in short and wide-area IoT technologies—A survey

    Get PDF
    In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions

    Low-Power Wireless for the Internet of Things: Standards and Applications: Internet of Things, IEEE 802.15.4, Bluetooth, Physical layer, Medium Access Control,coexistence, mesh networking, cyber-physical systems, WSN, M2M

    Get PDF
    International audienceThe proliferation of embedded systems, wireless technologies, and Internet protocols have enabled the Internet of Things (IoT) to bridge the gap between the virtual and physical world through enabling the monitoring and actuation of the physical world controlled by data processing systems. Wireless technologies, despite their offered convenience, flexibility, low cost, and mobility pose unique challenges such as fading, interference, energy, and security, which must be carefully addressed when using resource-constrained IoT devices. To this end, the efforts of the research community have led to the standardization of several wireless technologies for various types of application domains depending on factors such as reliability, latency, scalability, and energy efficiency. In this paper, we first overview these standard wireless technologies, and we specifically study the MAC and physical layer technologies proposed to address the requirements and challenges of wireless communications. Furthermore, we explain the use of these standards in various application domains, such as smart homes, smart healthcare, industrial automation, and smart cities, and discuss their suitability in satisfying the requirements of these applications. In addition to proposing guidelines to weigh the pros and cons of each standard for an application at hand, we also examine what new strategies can be exploited to overcome existing challenges and support emerging IoT applications

    Self-organizing Bluetooth scatternets

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 71-73).There is increasing interest in wireless ad hoc networks built from portable devices equipped with short-range wireless network interfaces. This thesis addresses issues related to internetworking such networks to form larger "scatternets." Within the constraints imposed by the emerging standard Bluetooth link layer and MAC protocol, we develop a set of online algorithms to form scatternets and to schedule point-to-point communication links. Our efficient online topology formation algorithm, called TSF (Tree Scatternet Formation), builds scatternets by connecting nodes into a tree structure that simplifies packet routing and scheduling. Unlike earlier works, our design does not restrict the number of nodes in the scatternet, and also allows nodes to arrive and leave at arbitrary times, incrementally building the topology and healing partitions when they occur. We have developed a Bluetooth simulator in ns which includes most aspects of the entire Bluetooth protocol stack. It was used to derive simulation results that show that TSF has low latencies in link establishment, tree formation and partition healing. All of these grow logarithmically with the number of nodes in the scatternet. Furthermore, TSF generates tree topologies where the average path length between any node pair grows logarithmically with the size of the scatternet. Our scheduling algorithm, called TSS (Tree Scatternet Scheduling), takes advantage of the tree structure of the scatternets constructed by TSF. Unlike previous works, TSS coordinates one-hop neighbors effectively to increase the overall performance of the scatternet. In addition, TSS is robust and responsive to network conditions, adapting the inter-piconet link schedule effectively based on varying workload conditions. We demonstrate that TSS has good performance on throughput and latency under various traffic loads.by Godfrey Tan.S.M

    Improving forwarding mechanisms for mobile personal area networks

    Get PDF
    This thesis presents novel methods for improving forwarding mechanisms for personal area networks. Personal area networks are formed by interconnecting personal devices such as personal digital assistants, portable multimedia devices, digital cameras and laptop computers, in an ad hoc fashion. These devices are typically characterised by low complexity hardware, low memory and are usually batterypowered. Protocols and mechanisms developed for general ad hoc networking cannot be directly applied to personal area networks as they are not optimised to suit their specific constraints. The work presented herein proposes solutions for improving error control and routing over personal area networks, which are very important ingredients to the good functioning of the network. The proposed Packet Error Correction (PEC) technique resends only a subset of the transmitted packets, thereby reducing the overhead, while ensuring improved error rates. PEC adapts the number of re-transmissible packets to the conditions of the channel so that unnecessary retransmissions are avoided. It is shown by means of computer simulation that PEC behaves better, in terms of error reduction and overhead, than traditional error control mechanisms, which means that it is adequate for low-power personal devices. The proposed C2HR routing protocol, on the other hand, is designed such that the network lifetime is maximised. This is achieved by forwarding packets through the most energy efficient paths. C2HR is a hybrid routing protocol in the sense that it employs table-driven (proactive) as well as on-demand (reactive) components. Proactive routes are the primary routes, i.e., packets are forwarded through those paths when the network is stable; however, in case of failures, the protocol searches for alternative routes on-demand, through which data is routed temporarily. The advantage of C2HR is that data can still be forwarded even when routing is re-converging, thereby increasing the throughput. Simulation results show that the proposed routing method is more energy efficient than traditional least hops routing, and results in higher data throughput. C2HR relies on a network leader for collecting and distributing topology information, which in turn requires an estimate of the underlying topology. Thus, this thesis also proposes a new cooperative leader election algorithm and techniques for estimating network characteristics in mobile environments. The proposed solutions are simulated under various conditions and demonstrate appreciable behaviour

    Low Power Multi-Hop Networking Analysis in Intelligent Environments

    Get PDF
    Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide.The research described in this paper was included in AIRHEM IV project and financially supported by the Basque Government Research Program called Elkartek 2015 (code KK_2015/0000085)
    • …
    corecore